Financial Econometrics
Introduction to Financial Econometrics

Gerald P. Dwyer

Trinity College, Dublin

January 2013
Notation for proportional returns

- \(p_t \) is the price
 - Interpret \(p_t \) as end-of-period price
 - “Price” includes all payments received
- \(R_t \) is the proportional return, \(R_t = \frac{p_t - p_{t-1}}{p_{t-1}} = \frac{p_t}{p_{t-1}} - 1 \)
 - Sometimes called arithmetic return or “simple return”
- Gross proportional return is \(\frac{p_t}{p_{t-1}} = 1 + R_t \)
- \(R_t [k] \) is the \(k \)-period return, \(R_t [k] = \frac{p_t - p_{t-k}}{p_{t-k}} = \frac{p_t}{p_{t-k}} - 1 \)
 - \(1 + R_t [k] = \frac{p_t}{p_{t-1}} \frac{p_{t-1}}{p_{t-2}} \cdots \frac{p_{t-(k-1)}}{p_{t-k}} = \prod_{j=0}^{k-1} \frac{p_{t-j}}{p_{t-j-1}} \)
 - \(1 + R_t [k] = \prod_{j=0}^{k-1} (1 + R_{t-j}) \)
Annualized returns

- Usually annualize returns
 - If $1 + R_t[k]$ is a k-year gross return, the annualized gross return is $\left(\frac{p_t}{p_{t-k}} \right)^{1/k}$
 - The annualized net return is $\left(\frac{p_t}{p_{t-k}} \right)^{1/k} - 1$
- Often don’t convert monthly or daily returns to annualized returns
 - Magnitudes would be ridiculous
 - A 1 percent return in one day is an 892.6 percent return per year
 - A 2 percent return in one day is an 7799.0 percent return per year
Notation for logarithmic returns

- r_t is the log return, $r_t = \ln \left(\frac{p_t}{p_{t-1}} \right) = \ln \left(1 + R_t \right)$
 - Similar in magnitude to R_t if R_t close to zero
 - $R_t = 0.05$, $r_t = 0.0488$
 - Also can say similar in magnitude for “small” changes in price

- $r_t[k]$ is the k-period return, $r_t[k] = \ln \left(\frac{p_t}{p_{t-k}} \right)$

- $r_t[k] = \ln \left(\frac{p_t}{p_{t-1}} \right) + \ldots + \ln \left(\frac{p_{t-(k-1)}}{p_{t-k}} \right) = \sum_{j=0}^{k-1} r_{t-j}$
 - Usually annualize returns originally longer than a year
 - If $r_t[k]$ is a k-year return, then annualized return is $r_t[k] / k$

- Log return is continuously compounded return
- Can be viewed as a Taylor series approximation of proportional return around zero
Log returns often handy

- Multiplication becomes addition

 \[r_t[k] = \ln \left(\frac{p_t}{p_{t-1}} \right) + \ldots + \ln \left(\frac{p_{t-(k-1)}}{p_{t-k}} \right) = \sum_{j=0}^{k-1} r_{t-j} \]

- Lessens influence of extreme arithmetic returns

 - Suppose have a set of daily data with typical arithmetic return of ±1 percent

 - Standard deviation of arithmetic and log returns are about ±1 percent

 - Suppose a couple of observation have high positive returns

 - Arithmetic return of 20 percent is log return of about 18 percent

 - Lessens effect of observations with high returns

 - Effect bigger as arithmetic return deviates from zero

 - \(p_t = 2, \ p_t = 1, \ R_t = 1 \) or 100 percent

 - \(r_t = \ln \left(\frac{2}{1} \right) = 0.693 \) or 69 percent
Excess return

- Analysis often focuses on excess return
 - Not return relative to zero
- Definition: \(Z_t = R_t - R^f_t \)
 - where \(R^f_t \) is the “risk-free” arithmetic rate
- Definition: \(z_t = r_t - r^f_t \)
 - where \(r^f_t \) is the “risk-free” log rate
 - can be computed from \(r^f_t = \ln \left(1 + R^f_t\right) \) even if prices and interest payments not available
Distribution of data, e.g. returns

- Distributions
 - Joint, marginal and conditional
 - Moments of distribution, raw and about mean

- Moments of distribution about mean (except mean itself) for a series x

 $\mu = \frac{\sum_{t=1}^{T} x_t}{T}$

 - Mean $\hat{\mu} = \frac{\sum_{t=1}^{T} x_t}{T}$
 - Variance

 $\hat{\mu}_2 = \sigma^2 = \frac{\sum_{t=1}^{T} (x_t - \hat{\mu})^2}{T}$

 - Divide by $T - 1$ for an unbiased estimator
 - Standard deviation is σ
Third moment about mean

- Third moment measures skewness

\[\hat{\mu}_3 = \frac{\sum_{t=1}^{T} (x_t - \hat{\mu})^3}{T} \]

- Say distribution is symmetric if skewness coefficient \(\hat{\mu}_3 = 0 \)
- No unequivocal measure of skewness \(\hat{S}(x) \)
- Common to normalize to eliminate units
 - \(\hat{\mu}_3 \) changes by 1000 when multiply \(x \) by 10, for example

\[\hat{S}(x) = \frac{\hat{\mu}_3}{\sigma^3} \]
Fourth moments about mean

Fourth moment measures kurtosis – “fat tails”

\[\hat{\mu}_4 = \frac{\sum_{t=1}^{T} (x_t - \hat{\mu})^4}{T} \]

What is big or small?

Common to measure excess kurtosis compared to normal distribution

As for skewness, changing the units of \(x \) changes the magnitude and normalize by \(\sigma \) to eliminate this

\[\hat{K}(x) = \frac{\hat{\mu}_4}{\sigma^4} \]

or

\[\hat{K}^e(x) = \frac{\hat{\mu}_4}{\sigma^4} - 3 \]

Normal distribution has \(\hat{K}(x) = 3 \) and \(\hat{K}^e(x) = 0 \)
Before doing any complex analysis of data, examine them carefully

- Illustrate with data on over 600,000 forecasts by analysts of firms’s earnings
 - Interesting partly because maybe forecast “surprises” may affect stock price
 - Earnings greater than expected increase stock price if result in forecast of higher earnings in the future
 - Earnings less than expected decrease stock price if result in forecast of lower earnings in the future
- Analyze earnings surprise

\[
e_{i,j}^{T,t} = \frac{a_{i,T} - f_{i,j}^{T,t}}{p_{i,T-1}^{i}}
\]

where \(a_{i,T}^{i}\) is the earnings announcement for firm \(i\) at time \(T\), \(f_{i,j}^{T,t}\) is the forecast made for firm \(i\)’s earnings at \(T\) by analyst \(j\), with forecast made at time \(t\) (before \(T\)) and \(p_{i,T-1}^{i}\) is the stock price for firm \(i\) at \(T-1\) (before \(T\))
Characteristics of earnings surprise data

- Data from “Investment Analysts’ Forecasts of Earnings” by Rocco Ciceretti, Iftekhar Hasan and me
- Clean up data
 - Look for apparent errors (e.g. earnings many times greater than stock price)
 - Restrict to forecasts of U.S. firms by U.S. analysts
 - End up with 662,016 observations for 6,574 companies
- Might think we can’t “look” at these data
Statistical summary of data
Summary Table 1

- Survey Table 1.pdf
<table>
<thead>
<tr>
<th>Variable</th>
<th>Twelve Month Horizon</th>
<th>Six Month Horizon</th>
<th>One Month Horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Observations</td>
</tr>
<tr>
<td>Actual Earnings</td>
<td>-1.6137</td>
<td>0.2844</td>
<td>150</td>
</tr>
<tr>
<td>Earnings Forecasts</td>
<td>-1.1532</td>
<td>0.2933</td>
<td>76</td>
</tr>
<tr>
<td>Forecast Errors</td>
<td>-1.2442</td>
<td>0.7614</td>
<td>89</td>
</tr>
</tbody>
</table>

Note: For actual earnings and earnings forecasts there are no positive observations outside the -0.5 to +0.5 range. For forecast errors, there are 6, 2 and 0 excluded positive observations at the 12, 6, and 1 forecast horizon; the remaining are negative.
Graphical summary of data for twelve-month-ahead forecasts

Figure 1
Actual Earnings and Earnings Forecast
Panel 3: Forecast Horizon of 12 Months

Normal Distribution of Actual Earnings

- Actual Earnings
- Earnings Forecast
Graphical summary of data for six-month-ahead forecasts

Figure 1
Actual Earnings and Earnings Forecast
Panel 2: Forecast Horizon of 6 Months

Normal Distribution of Actual Earnings
Figure 1
Actual Earnings and Earnings Forecast
Panel 1: Forecast Horizon of One Month

Normal Distribution of Actual Earnings
Summary statistics for twelve-month-ahead forecasts
Survey Table 2
Table 2
Distribution of Forecast Errors by Year and Horizon
Twelve Month Horizon

<table>
<thead>
<tr>
<th>Year</th>
<th>Minimum</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Skewness Coefficient</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>-.81</td>
<td>-.4278</td>
<td>-.1265</td>
<td>-.0721</td>
<td>-.0249</td>
<td>-.0040</td>
<td>.0003</td>
<td>.0059</td>
<td>.0121</td>
<td>.0456</td>
<td>.09</td>
<td>-.0270</td>
<td>.0754</td>
<td>-4.98</td>
<td>31.33</td>
</tr>
<tr>
<td>1991</td>
<td>-.88</td>
<td>-.3711</td>
<td>-.1320</td>
<td>-.0770</td>
<td>-.0245</td>
<td>-.0048</td>
<td>.0002</td>
<td>.0068</td>
<td>.0177</td>
<td>.0667</td>
<td>.30</td>
<td>-.0249</td>
<td>.0711</td>
<td>-4.95</td>
<td>37.73</td>
</tr>
<tr>
<td>1992</td>
<td>-.40</td>
<td>-.2019</td>
<td>-.0922</td>
<td>-.0509</td>
<td>-.0158</td>
<td>-.0023</td>
<td>.0012</td>
<td>.0098</td>
<td>.0193</td>
<td>.0557</td>
<td>.12</td>
<td>-.0141</td>
<td>.0418</td>
<td>-3.53</td>
<td>18.96</td>
</tr>
<tr>
<td>1993</td>
<td>-.38</td>
<td>-.1789</td>
<td>-.0649</td>
<td>-.0367</td>
<td>-.0110</td>
<td>-.0011</td>
<td>.0022</td>
<td>.0088</td>
<td>.0185</td>
<td>.0636</td>
<td>.11</td>
<td>-.0095</td>
<td>.0368</td>
<td>-3.69</td>
<td>22.69</td>
</tr>
<tr>
<td>1994</td>
<td>-.47</td>
<td>-.1807</td>
<td>-.0629</td>
<td>-.0334</td>
<td>-.0091</td>
<td>-.0003</td>
<td>.0024</td>
<td>.0100</td>
<td>.0194</td>
<td>.0554</td>
<td>.17</td>
<td>-.0096</td>
<td>.0431</td>
<td>-6.08</td>
<td>52.96</td>
</tr>
<tr>
<td>1995</td>
<td>-.27</td>
<td>-.1297</td>
<td>-.0618</td>
<td>-.0367</td>
<td>-.0099</td>
<td>.0000</td>
<td>.0039</td>
<td>.0118</td>
<td>.0201</td>
<td>.0633</td>
<td>.18</td>
<td>-.0071</td>
<td>.0309</td>
<td>-2.50</td>
<td>16.08</td>
</tr>
<tr>
<td>1996</td>
<td>-.29</td>
<td>-.1455</td>
<td>-.0697</td>
<td>-.0379</td>
<td>-.0100</td>
<td>-.0001</td>
<td>.0032</td>
<td>.0134</td>
<td>.0256</td>
<td>.0593</td>
<td>.20</td>
<td>-.0078</td>
<td>.0337</td>
<td>-2.20</td>
<td>13.34</td>
</tr>
<tr>
<td>1997</td>
<td>-.45</td>
<td>-.1566</td>
<td>-.0608</td>
<td>-.0329</td>
<td>-.0093</td>
<td>-.0008</td>
<td>.0023</td>
<td>.0085</td>
<td>.0143</td>
<td>.0400</td>
<td>.11</td>
<td>-.0094</td>
<td>.0362</td>
<td>-5.56</td>
<td>49.00</td>
</tr>
<tr>
<td>1998</td>
<td>-.49</td>
<td>-.2378</td>
<td>-.0704</td>
<td>-.0495</td>
<td>-.0198</td>
<td>-.0035</td>
<td>.0010</td>
<td>.0060</td>
<td>.0131</td>
<td>.0419</td>
<td>.27</td>
<td>-.0154</td>
<td>.0422</td>
<td>-4.19</td>
<td>29.79</td>
</tr>
<tr>
<td>1999</td>
<td>-.76</td>
<td>-.2484</td>
<td>-.0743</td>
<td>-.0391</td>
<td>-.0119</td>
<td>.0000</td>
<td>.0050</td>
<td>.0224</td>
<td>.0430</td>
<td>.1306</td>
<td>.39</td>
<td>-.0079</td>
<td>.0576</td>
<td>-3.74</td>
<td>39.19</td>
</tr>
<tr>
<td>2000</td>
<td>-.51</td>
<td>-.2230</td>
<td>-.0752</td>
<td>-.0395</td>
<td>-.0120</td>
<td>.0003</td>
<td>.0055</td>
<td>.0276</td>
<td>.0634</td>
<td>.1277</td>
<td>.31</td>
<td>-.0054</td>
<td>.0508</td>
<td>-2.41</td>
<td>17.01</td>
</tr>
<tr>
<td>2001</td>
<td>-1.24</td>
<td>-.3840</td>
<td>-.1364</td>
<td>-.0785</td>
<td>-.0335</td>
<td>-.0086</td>
<td>.0007</td>
<td>.0091</td>
<td>.0208</td>
<td>.1803</td>
<td>.76</td>
<td>-.0265</td>
<td>.0895</td>
<td>-4.00</td>
<td>50.19</td>
</tr>
<tr>
<td>2002</td>
<td>-.74</td>
<td>-.2228</td>
<td>-.0656</td>
<td>-.0370</td>
<td>-.0114</td>
<td>-.0002</td>
<td>.0064</td>
<td>.0234</td>
<td>.0426</td>
<td>.0976</td>
<td>.32</td>
<td>-.0067</td>
<td>.0522</td>
<td>-5.09</td>
<td>53.33</td>
</tr>
<tr>
<td>2003</td>
<td>-.71</td>
<td>-.1839</td>
<td>-.0617</td>
<td>-.0339</td>
<td>-.0104</td>
<td>.0003</td>
<td>.0092</td>
<td>.0266</td>
<td>.0443</td>
<td>.0949</td>
<td>.28</td>
<td>-.0045</td>
<td>.0464</td>
<td>-3.98</td>
<td>38.24</td>
</tr>
<tr>
<td>2004</td>
<td>-.33</td>
<td>-.1148</td>
<td>-.0438</td>
<td>-.0212</td>
<td>-.0068</td>
<td>.0010</td>
<td>.0088</td>
<td>.0264</td>
<td>.0394</td>
<td>.0812</td>
<td>.14</td>
<td>-.0003</td>
<td>.0317</td>
<td>-3.10</td>
<td>26.77</td>
</tr>
</tbody>
</table>
Six Month Horizon

<table>
<thead>
<tr>
<th>Year</th>
<th>Minimum</th>
<th>1%</th>
<th>5%</th>
<th>10%</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Skewness Coefficient</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>-1.16</td>
<td>-2.730</td>
<td>-0.955</td>
<td>-0.0427</td>
<td>-0.0122</td>
<td>-0.0016</td>
<td>0.0008</td>
<td>0.0060</td>
<td>0.0142</td>
<td>0.0575</td>
<td>0.20</td>
<td>-0.0162</td>
<td>0.0669</td>
<td>-7.95</td>
<td>92.95</td>
</tr>
<tr>
<td>1991</td>
<td>-0.54</td>
<td>-2.171</td>
<td>-0.642</td>
<td>-0.0353</td>
<td>-0.0097</td>
<td>-0.0015</td>
<td>0.0009</td>
<td>0.0074</td>
<td>0.0176</td>
<td>0.0600</td>
<td>0.18</td>
<td>-0.0108</td>
<td>0.0441</td>
<td>-5.33</td>
<td>44.17</td>
</tr>
<tr>
<td>1992</td>
<td>-0.32</td>
<td>-1.301</td>
<td>-0.444</td>
<td>-0.0219</td>
<td>-0.0071</td>
<td>-0.0006</td>
<td>0.0013</td>
<td>0.0062</td>
<td>0.0122</td>
<td>0.0357</td>
<td>0.11</td>
<td>-0.0066</td>
<td>0.0276</td>
<td>-5.01</td>
<td>39.50</td>
</tr>
<tr>
<td>1993</td>
<td>-0.16</td>
<td>-0.814</td>
<td>-0.247</td>
<td>-0.0137</td>
<td>-0.0037</td>
<td>-0.0001</td>
<td>0.0018</td>
<td>0.0066</td>
<td>0.0142</td>
<td>0.0409</td>
<td>0.18</td>
<td>-0.0024</td>
<td>0.0181</td>
<td>-2.34</td>
<td>24.80</td>
</tr>
<tr>
<td>1994</td>
<td>-0.17</td>
<td>-0.705</td>
<td>-0.284</td>
<td>-0.0159</td>
<td>-0.0041</td>
<td>-0.0000</td>
<td>0.0024</td>
<td>0.0076</td>
<td>0.0129</td>
<td>0.0400</td>
<td>0.16</td>
<td>-0.0025</td>
<td>0.0170</td>
<td>-1.96</td>
<td>20.70</td>
</tr>
<tr>
<td>1995</td>
<td>-0.30</td>
<td>-0.828</td>
<td>-0.330</td>
<td>-0.0169</td>
<td>-0.0044</td>
<td>-0.0000</td>
<td>0.0022</td>
<td>0.0065</td>
<td>0.0111</td>
<td>0.0293</td>
<td>0.10</td>
<td>-0.0038</td>
<td>0.0198</td>
<td>-5.37</td>
<td>52.00</td>
</tr>
<tr>
<td>1996</td>
<td>-0.32</td>
<td>-0.969</td>
<td>-0.287</td>
<td>-0.0152</td>
<td>-0.0038</td>
<td>-0.0001</td>
<td>0.0024</td>
<td>0.0090</td>
<td>0.0151</td>
<td>0.0389</td>
<td>0.19</td>
<td>-0.0029</td>
<td>0.0227</td>
<td>-4.78</td>
<td>54.34</td>
</tr>
<tr>
<td>1997</td>
<td>-0.27</td>
<td>-0.907</td>
<td>-0.275</td>
<td>-0.0132</td>
<td>-0.0030</td>
<td>-0.0001</td>
<td>0.0023</td>
<td>0.0079</td>
<td>0.0146</td>
<td>0.0422</td>
<td>0.17</td>
<td>-0.0021</td>
<td>0.0206</td>
<td>-2.77</td>
<td>38.07</td>
</tr>
<tr>
<td>1998</td>
<td>-0.33</td>
<td>-0.992</td>
<td>-0.359</td>
<td>-0.0219</td>
<td>-0.0081</td>
<td>-0.0016</td>
<td>0.0008</td>
<td>0.0043</td>
<td>0.0094</td>
<td>0.0290</td>
<td>0.29</td>
<td>-0.0063</td>
<td>0.0226</td>
<td>-3.18</td>
<td>49.61</td>
</tr>
<tr>
<td>1999</td>
<td>-0.56</td>
<td>-1.600</td>
<td>-0.446</td>
<td>-0.0202</td>
<td>-0.0048</td>
<td>-0.0001</td>
<td>0.0031</td>
<td>0.0109</td>
<td>0.0193</td>
<td>0.0533</td>
<td>0.55</td>
<td>-0.0052</td>
<td>0.0383</td>
<td>-3.74</td>
<td>78.39</td>
</tr>
<tr>
<td>2000</td>
<td>-0.36</td>
<td>-1.101</td>
<td>-0.447</td>
<td>-0.0221</td>
<td>-0.0059</td>
<td>-0.0000</td>
<td>0.0022</td>
<td>0.0136</td>
<td>0.0261</td>
<td>0.0668</td>
<td>0.17</td>
<td>-0.0037</td>
<td>0.0273</td>
<td>-2.68</td>
<td>26.48</td>
</tr>
<tr>
<td>2001</td>
<td>-0.64</td>
<td>-1.714</td>
<td>-0.494</td>
<td>-0.0274</td>
<td>-0.0092</td>
<td>-0.0015</td>
<td>0.0012</td>
<td>0.0074</td>
<td>0.0141</td>
<td>0.0581</td>
<td>0.20</td>
<td>-0.0085</td>
<td>0.0391</td>
<td>-5.95</td>
<td>66.46</td>
</tr>
<tr>
<td>2002</td>
<td>-0.38</td>
<td>-0.997</td>
<td>-0.325</td>
<td>-0.0158</td>
<td>-0.0054</td>
<td>-0.0003</td>
<td>0.0027</td>
<td>0.0088</td>
<td>0.0159</td>
<td>0.0402</td>
<td>0.21</td>
<td>-0.0038</td>
<td>0.0269</td>
<td>-6.09</td>
<td>76.24</td>
</tr>
<tr>
<td>2003</td>
<td>-0.49</td>
<td>-0.994</td>
<td>-0.295</td>
<td>-0.0140</td>
<td>-0.0036</td>
<td>-0.0004</td>
<td>0.0045</td>
<td>0.0125</td>
<td>0.0213</td>
<td>0.0667</td>
<td>0.38</td>
<td>-0.0011</td>
<td>0.0310</td>
<td>-2.52</td>
<td>68.31</td>
</tr>
<tr>
<td>2004</td>
<td>-0.29</td>
<td>-0.617</td>
<td>-0.284</td>
<td>-0.0184</td>
<td>-0.0045</td>
<td>-0.0000</td>
<td>0.0032</td>
<td>0.0092</td>
<td>0.0164</td>
<td>0.0389</td>
<td>0.09</td>
<td>-0.0025</td>
<td>0.0195</td>
<td>-5.05</td>
<td>57.05</td>
</tr>
<tr>
<td>Year</td>
<td>Minimum</td>
<td>1%</td>
<td>5%</td>
<td>10%</td>
<td>25%</td>
<td>Median</td>
<td>75%</td>
<td>90%</td>
<td>95%</td>
<td>99%</td>
<td>Maximum</td>
<td>Mean</td>
<td>Standard Deviation</td>
<td>Skewness</td>
<td>Kurtosis</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1990</td>
<td>-.61</td>
<td>-.0970</td>
<td>-.0286</td>
<td>-.0146</td>
<td>-.0031</td>
<td>.0001</td>
<td>.0014</td>
<td>.0054</td>
<td>.0131</td>
<td>.0526</td>
<td>.22</td>
<td>-.0035</td>
<td>.0342</td>
<td>-11.48</td>
<td>204.59</td>
</tr>
<tr>
<td>1991</td>
<td>-.24</td>
<td>-.0659</td>
<td>-.0231</td>
<td>-.0111</td>
<td>-.0024</td>
<td>.0000</td>
<td>.0020</td>
<td>.0074</td>
<td>.0141</td>
<td>.0395</td>
<td>.13</td>
<td>-.0015</td>
<td>.0188</td>
<td>-2.99</td>
<td>48.29</td>
</tr>
<tr>
<td>1992</td>
<td>-.14</td>
<td>-.0698</td>
<td>-.0118</td>
<td>-.0053</td>
<td>-.0010</td>
<td>.0002</td>
<td>.0025</td>
<td>.0073</td>
<td>.0144</td>
<td>.0402</td>
<td>.24</td>
<td>.0006</td>
<td>.0220</td>
<td>4.09</td>
<td>61.43</td>
</tr>
<tr>
<td>1993</td>
<td>-.26</td>
<td>-.0659</td>
<td>-.0127</td>
<td>-.0064</td>
<td>-.0012</td>
<td>.0001</td>
<td>.0020</td>
<td>.0062</td>
<td>.0112</td>
<td>.0400</td>
<td>.10</td>
<td>-.0005</td>
<td>.0154</td>
<td>-4.97</td>
<td>71.88</td>
</tr>
<tr>
<td>1994</td>
<td>-.11</td>
<td>-.0274</td>
<td>-.0079</td>
<td>-.0039</td>
<td>-.0007</td>
<td>.0002</td>
<td>.0020</td>
<td>.0057</td>
<td>.0104</td>
<td>.0289</td>
<td>.09</td>
<td>.0006</td>
<td>.0102</td>
<td>-1.20</td>
<td>41.64</td>
</tr>
<tr>
<td>1995</td>
<td>-.22</td>
<td>-.0455</td>
<td>-.0093</td>
<td>-.0048</td>
<td>-.0009</td>
<td>.0002</td>
<td>.0019</td>
<td>.0057</td>
<td>.0114</td>
<td>.0390</td>
<td>.31</td>
<td>.0004</td>
<td>.0188</td>
<td>1.28</td>
<td>104.42</td>
</tr>
<tr>
<td>1996</td>
<td>-.20</td>
<td>-.0277</td>
<td>-.0078</td>
<td>-.0036</td>
<td>-.0005</td>
<td>.0003</td>
<td>.0017</td>
<td>.0054</td>
<td>.0097</td>
<td>.0482</td>
<td>.17</td>
<td>.0008</td>
<td>.0137</td>
<td>-.90</td>
<td>89.84</td>
</tr>
<tr>
<td>1997</td>
<td>-.36</td>
<td>-.0375</td>
<td>-.0114</td>
<td>-.0047</td>
<td>-.0006</td>
<td>.0003</td>
<td>.0019</td>
<td>.0054</td>
<td>.0096</td>
<td>.0325</td>
<td>.19</td>
<td>.0002</td>
<td>.0145</td>
<td>-6.48</td>
<td>217.27</td>
</tr>
<tr>
<td>1998</td>
<td>-.16</td>
<td>-.0256</td>
<td>-.0089</td>
<td>-.0044</td>
<td>-.0006</td>
<td>.0003</td>
<td>.0017</td>
<td>.0050</td>
<td>.0089</td>
<td>.0285</td>
<td>.20</td>
<td>.0004</td>
<td>.0102</td>
<td>1.12</td>
<td>110.97</td>
</tr>
<tr>
<td>1999</td>
<td>-.23</td>
<td>-.0410</td>
<td>-.0069</td>
<td>-.0031</td>
<td>-.0004</td>
<td>.0004</td>
<td>.0023</td>
<td>.0062</td>
<td>.0116</td>
<td>.0457</td>
<td>.28</td>
<td>.0011</td>
<td>.0158</td>
<td>1.31</td>
<td>118.62</td>
</tr>
<tr>
<td>2000</td>
<td>-.24</td>
<td>-.0673</td>
<td>-.0141</td>
<td>-.0057</td>
<td>-.0007</td>
<td>.0002</td>
<td>.0013</td>
<td>.0044</td>
<td>.0088</td>
<td>.0291</td>
<td>.11</td>
<td>-.0011</td>
<td>.0147</td>
<td>-6.61</td>
<td>83.84</td>
</tr>
<tr>
<td>2001</td>
<td>-.18</td>
<td>-.0371</td>
<td>-.0101</td>
<td>-.0038</td>
<td>-.0005</td>
<td>.0002</td>
<td>.0014</td>
<td>.0038</td>
<td>.0066</td>
<td>.0211</td>
<td>.08</td>
<td>-.0004</td>
<td>.0104</td>
<td>-6.24</td>
<td>94.52</td>
</tr>
<tr>
<td>2002</td>
<td>-.26</td>
<td>-.0340</td>
<td>-.0079</td>
<td>-.0036</td>
<td>-.0005</td>
<td>.0003</td>
<td>.0013</td>
<td>.0038</td>
<td>.0067</td>
<td>.0211</td>
<td>.35</td>
<td>-.0002</td>
<td>.0135</td>
<td>.63</td>
<td>268.15</td>
</tr>
<tr>
<td>2003</td>
<td>-.36</td>
<td>-.0645</td>
<td>-.0100</td>
<td>-.0047</td>
<td>-.0007</td>
<td>.0003</td>
<td>.0018</td>
<td>.0054</td>
<td>.0097</td>
<td>.0373</td>
<td>.15</td>
<td>-.0003</td>
<td>.0157</td>
<td>-7.81</td>
<td>145.27</td>
</tr>
<tr>
<td>2004</td>
<td>-.15</td>
<td>-.0333</td>
<td>-.0078</td>
<td>-.0037</td>
<td>-.0007</td>
<td>.0004</td>
<td>.0022</td>
<td>.0052</td>
<td>.0087</td>
<td>.0255</td>
<td>.15</td>
<td>.0006</td>
<td>.0092</td>
<td>.89</td>
<td>77.55</td>
</tr>
</tbody>
</table>

* This test statistic has a Chi-square distribution with two degrees of freedom under the null hypothesis. The value of this Chi-square at the .001 level of significance is 13.8. All of the values in the table have p-values less than 10^-8.*
Returns distribution – Independent and identical normal distribution is simple

- Likelihood function

\[L(r_t | \theta) = \prod_{t=1}^{T} \frac{1}{\sqrt{2\pi}\sigma_t} \exp \left(-\frac{(r_t - \mu)^2}{2\sigma_t^2} \right) \]

- Note time-varying variance
- With constant variance
 - Advantages: Simple and computationally tractable
 - Disadvantages: Not really consistent with the data

Distributions more consistent with the data?

- Time-varying variance
- Depending on time frame, returns are not independent over time
 - \(r_t \) is correlated with \(r_{t-1} \)
 - Correlation changes with time frame (minutes, versus days, versus months or years)
Empirical analysis of returns on stock indices and individual stocks

- CRSP value-weighted daily indices
- Individual stocks
- Returns and volatility of returns