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ABSTRACT

We present a random number generator that is useful for serious computations and can be  implemented
easily in any language that has 32-bit signed integers, for example C, C++ and FORTRAN.  This combination
generator has a cycle length that would take two millennia to compute on widely used desktop computers. Based
on an extensive search, we provide parameter values better than those previously available.
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I.  INTRODUCTION

Economists use computer-generated random numbers in applications that range from the

commonplace—simulation—to relatively novel ones—optimization and estimation (Robert and Casella 1999.)

In this paper, we examine a generator that is easy to program in virtually any environment and is a generalization

of one often used. We provide better parameter values than those previously available.1

II.  CONGRUENTIAL GENERATORS

There are a large number of pseudorandom number generators available (Niederreiter 1992, Chs. 7-10;

Knuth 1998, Ch. 3.) We focus on multiplicative congruential generators in this paper. While generators such as

those proposed by Marsaglia and Zaman (1991) and related ones have received a great deal of attention in recent

years, not all of this attention is complimentary (L’Ecuyer 1997) and the properties of congruential generators

are well understood.

A multiplicative congruential generator is

(1)x ax mi i= −1 mod .

where xi is the i’th member of the sequence of pseudorandom numbers, a is a multiplier, m is the nonzero

modulus and the mod operator means that axi
!1 mod m is the least nonnegative remainder from dividing axi

!1

by m. Generators such as (1) are used to produce nonnegative integers because arithmetic in integers can be

exact. The integers can be transformed to decimal numbers (Monahan 1985.)

Combination Generators

Combining congruential generators provides a powerful generalization of the multiplicative generator.

Consider two multiplicative generators used to generate underlying sequences and  with moduli myyi; @ zi; @
and mz where my>mz without loss of generality. The sequences can be added or subtracted but subtraction makes

it is easier to avoid overflow. The generator of the combined sequence isxi; @
(2)x y z mi i i y= −1 6mod .

The final mod operation on the difference keeps the sequence of pseudorandom numbers on [ , ].1 1my −
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L’Ecuyer and Tezuka (1991) show that the generator (1) is approximately equivalent in important

respects to a multiplicative congruential generator with much larger multiplier and modulus. For example, if my

is 231-1 and mz is 231-19, each about , the combination generator is approximately equivalent to a2 15 109. ⋅

generator with a modulus of about .4 61 1018. ⋅

Length of Full Cycle

The length of a full cycle, or the period, of a congruential generator is a mathematical property that can

be determined analytically. For multiplicative congruential generators, the best possible full cycle of the

difference equation equals the modulus less one, m-1, and the values are on (Knuth 1998, pp. 10-23.)[1, 1]m −

Most combinations of values of the multiplier a and the modulus m do not generate sequences with the maximum

possible period.  Prime moduli and some multipliers can produce full cycles.

One common modulus is 231-1, the largest signed integer representable in a register on many machines

and in many languages. The maximum possible period of a multiplicative generator with this modulus is 231-2,

or about 2.15 billion.  A couple of billion pseudorandom numbers is not adequate for many applications in

economics and finance, a deficiency only worsened if one agrees with Knuth (1998, p. 185) who suggests using

no more one-thousandth of a full cycle. Uses of pseudorandom numbers are likely to become increasingly

demanding, and indeed, one recent study of stochastic volatilities (Kim et al., 1998) uses almost a full cycle of

a congruential generator.  It is easy to generate a full cycle: It takes about 1.05 minutes on a Pentium 800 to

generate a full cycle of a multiplicative generator with a modulus of 231-1.

A combined generator can have a dramatically longer period than either of the constituent multiplicative

generators.  The period of a combination generator based on two generators with prime moduli on the order of

231 can have a period of about 2.31A1018 (L’Ecuyer 1988, p. 744.)  If it takes one minute to compute 231-2

pseudorandom numbers, it would take roughly 2,000 years to generate this cycle.

The Lattice Structure of Congruential Generators
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No matter how long or short their periods, congruential generators are deterministic difference equations

and phase diagrams can be used to examine their behavior. The points produced by a congruential generator in

two or more dimensions lie on hyperplanes. The distance between these hyperplanes varies with the multiplier,

which means that some multipliers are better than others.

These insights are used in the spectral test for congruential generators (Knuth 1998, pp. 93-118; Fishman

1996, pp. 611-28; Dwyer and Williams 2000), which finds the maximum distance in any direction between the

hyperplanes for a given multiplier. This distance is summarized in a test value that indicates closer hyperplanes

when the test value is higher. We have run spectral tests to determine good multipliers for the combined

generator. We require that multipliers be approximately factorable (Schrage 1979) for computational reasons,

which limits the multipliers considered.

Given two moduli, we performed a random search over multipliers. There are too many possible

combination multipliers for an exhaustive search given available computational power and there is no regularity

in the values from the spectral test.  The upper part of Table 1 shows the moduli examined and the number of

spectral tests for the alternative combinations of multipliers.  The lack of regularity in the test values suggests

sampling moduli uniformly, but we did run spectral tests for some moduli than others. We present the results of

all spectral tests rather than throw away some results.

The lower part of Table 1 presents the spectral test results for the ten best combination generators. The

table presents the multipliers and their associated moduli. The test results are the values of the spectral test and

the dimension at which the test attains that value. The dimension is informative because the spectral value is the

lowest value attained in an examination of several dimensions, in our case eight, and the dimension is the

dimension at which that spectral test value is attained.

Our best generator is significantly better than combination generators previously available.  The spectral

test result for the combination generator in L’Ecuyer (1988) is 0.39, in L’Ecuyer (1997) is 0.70 and in Knuth

(1998, Table 1, line 24 and p. 108) is 0.27.
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Properties of Subsets

 It is important to test subsets of pseudorandom numbers for apparent deviations from the desired

distribution. We ran the set of tests from Knuth (1998) as implemented in Dwyer and Williams (1996) as well

as the set of Diehard tests (McCullough 1999.) Our tests include tests for the consistency of the pseudorandom

numbers with the underlying distribution, tests for serial correlation of normally-distributed pseudorandom

numbers, runs tests and more specialized tests. The best combined generators based on the spectral test easily

pass these tests on subsets of various lengths.

Not all readily available generators are adequate. For example, the generators included in the libraries

with the Microsoft C++ version 4.2 and Borland C++ version 4.5 compilers do not pass the tests on subsets of

numbers. We conclude that these readily available generators have serious deficiencies.2 The generator in Gauss

version 3.2.38 is a multiplicative congruential generator with a modulus of 231-1, which has a maximum cycle

length of only 231-2.

III.  CONCLUSION

We conclude that the combination generator with our best multipliers is useful for serious computations.

The computer code available with this paper will work in any environment that has 32-bit signed integers, and

a full cycle from the portable combination generator is orders of magnitude longer than simple congruential

generators’ cycle. We use the spectral test of the entire sequence of pseudorandom numbers from a combination

generator to pick combination generators.  In applications, pseudorandom generators produce subsets of these

full sequences that are used as if they were draws from some distribution function.  Tests on subsets of the

pseudorandom numbers do not turn up any problems with the best combination generators. As a bonus, other

work shows that the suggested algorithm is reasonably quick relative to alternatives (Dwyer and Williams 2000.)
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Table 1

SPECTRAL TESTS AND RESULTS

Moduli Examined and Frequency

First Modulus Second Modulus Number of Trials Fraction of
Trials

231-1 2147483647 231-1 2147483629
231-61 2147483587
231-69 2147483587
231-85 2147483563
231-99 2147483549
231-105 2147483543

26048975
16004883

4388455
4140000
5039152

39075500

0.164
0.101
0.028
0.026
0.032
0.246

231-19 2147483629 231-61 2147483587
231-69 2147483587
231-85 2147483563
231-99 2147483549
231-105 2147483543

3000000
3000000
3000000
3000000
6000000

0.019
0.019
0.019
0.019
0.038

231-61 2147483587 231-69 2147483587
231-85 2147483563
231-99 2147483549
231-105 2147483543

13172284
4473228
3000000
3000000

0.083
0.028
0.019
0.019

231-69 2147483587 231-85 2147483563
231-99 2147483549
231-105 2147483543

3000000
3000000
3000000

0.019
0.019
0.019

231-85 2147483563 231-99 2147483549
231-105 2147483543

6000000
3000000

0.038
0.019

231-99 2147483549 231-105 2147483543 4222502 0.027

Best Combination Multipliers

First Second Spectral Test

Multiplier Modulus Multiplier Modulus Value Dimension

65670 2147483647 44095 2147483587 0.7616092 8

28078 2147483543 2568 2147483629 0.7587240 6

67142 2147483579 78375 2147483563 0.7548043 7

75756 2147483647 104165 2147483629 0.7536803 5

19391 2147483647 15514 2147483629 0.7513183 8

17916 2147483587 342720 2147483549 0.7509227 6

19995 2147483647 172074 2147483543 0.7507221 8

7332 2147483647 5557 2147483587 0.7503238 7

164130 2147483587 44888 2147483579 0.7500295 7

56599 2147483647 75939 2147483543 0.7491809 4
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1.  Dwyer and Williams (2000) provide more details about congruential generators and computer code for
faster generators than those suggested by Press et al. (1992, pp.  274-85), Knuth (1998) and others.

2. We wanted to test the generators in MatLab version 5 but the documentation does not provide sufficient
detail to reproduce the generator without substantial, possibly unsuccessful reverse engineering. We are
inclined not to use a generator which we cannot reproduce.  Knowing the generator and being able to
program it is necessary to have reproducible results.

Schrage, Linus.  1979. A More Portable Fortran Random Number Generator.  ACM Transactions on

Mathematical Software 5 (June), 132-38.
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7332 2147483647 5557 2147483587 0.7503238 7

164130 2147483587 44888 2147483579 0.7500295 7
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