Monetary Economics Neo-Fisherian Monetary Policy

Gerald P. Dwyer

March 2021

Literature

- This class and next
 - Crowder, "The Neo-Fisherian Hypothesis: Empirical Implications and Evidence?" 2020, Empirical Economics
 - ► Lucas, "Econometric Policy Evaluation: A Critique", 1976, Carnegie-Rochester
- Next topic
 - Dwyer and Tkac, "The Financial Crisis of 2008 in Fixed-income Markets", 2009, Journal of International Money and Finance

Outline

- Theory
 - Friedman"s Critique of Pegging Interest Rates
 - An Alternative Outcome under Rational Expectations
 - Forecast errors in announcement
 - Effect of change in interest rates

- 2 Some Empirical Evidence
 - Conclusion

Friedman on monetary policy implemented by interest rate I

- Friedman made the classic critique of implementing monetary policy by an interest rate
- Fed does not know equilibrium interest rate "market rate"
- Suppose the economy is in equilibrium

$$m_t - p_t = y_t - \beta i_t + \varepsilon_t$$
$$\beta > 0$$
$$y_t = y^f$$

Friedman on monetary policy implemented by interest rate I

Suppose that the monetary authority sets the interest rate

$$i_t = i_t^{cb}$$

- Ignore ε_t
 - ▶ Suppose $\varepsilon_t = 0$
- So initially

$$m_t - p_t = y^f - \beta i_t$$

- Now central bank wants to set $i_{t+1} < i_t$
- Real income fixed
- Prices will not change right away
 - ▶ Initial value of price level is p₀
 - \blacktriangleright Let the initial value of the interest rate be i_0
 - Let the new value be $i_1 < i_0$
 - ▶ Initial value of nominal quantity of money is m_0

Friedman on monetary policy implemented by interest rate II

• The central bank must increase m to lower i

$$m_1 - p_0 = y^f - \beta i_1$$

- $i_1 < i_0$ implies $m_1 > m_0$
- Now over time p increases because m has increased and people spend more on goods and services
- As a result i tends to increase back toward i_0
- The central bank, to keep i down, must increase m again
- This tends to raise prices again
- This is not all of the story things get worse
- Eventually, people will notice that inflation is higher and i will tend to increase more because the equilibrium interest rate now is above initial i, i₀
- The central bank will have to increase m at a more rapid rate to keep i down and inflation will accelerate

Friedman on monetary policy implemented by interest rate

- Implication: Holding the interest rate down will generate accelerating inflation
- Conversely, raising the interest rate and keeping it there will generate accelerating deflation
- Lesson: Interest rates set by monetary policy are on a knife edge, on which being off a little bit can be disastrous

An Alternative Story I

- An alternative view, which can be called "Neo-Fisherian"
- Suppose, as above,

$$m_t - p_t = y^f - \beta i_t + \varepsilon_t$$
$$i_t = i_t^{cb}$$

Add

$$i_t = r + \mathsf{E}_t \, \pi_{t+1}$$

which implies

$$i_t = i_t^{cb}$$
$$i_t = r + \mathsf{E}_t \, \pi_{t+1}$$

and therefore

$$i_t^{cb} = r + \mathsf{E}_t \, \pi_{t+1} \ \mathsf{E}_t \, \pi_{t+1} = i_t^{cb} - r$$

An Alternative Story II

- This is an equilibrium only if the households respond to announcements of a change in the central bank's policy rate by changing their expected inflation rate by exactly the amount of the change in the nominal interest rate
- This is not so implausible in this economy
 - ▶ The real interest rate and real income are constant
 - Everyone knows this
 - If the central bank has a reputation of always producing the inflation the central bank wants
 - And if, as a result, announcements of the nominal interest rate are interpreted as announcements of the inflation rate that will prevail
 - $Then E_t \pi_{t+1} = i_t^{cb} r$
 - Furthermore,

$$m_t - p_t = y^f - \beta i_t + \varepsilon_t$$

implies

$$p_t = m_t - y^f + \beta i_t - \varepsilon_t$$

An Alternative Story III

• and because $\Delta p_t = \pi_t$

$$\pi_t = \Delta m_t + \beta \Delta i_t - \Delta \varepsilon_t$$

and

$$\pi_{t+1} = \Delta m_{t+1} + \beta \Delta i_{t+1}^{cb} - \Delta \varepsilon_{t+1}$$

► This implies

$$\mathsf{E}_t \, \pi_{t+1} = \mathsf{E}_t \, \Delta m_{t+1} + \beta \, \mathsf{E}_t \, \Delta i_{t+1}^{cb} - \mathsf{E}_t \, \Delta \varepsilon_{t+1}$$

Now $E_t \pi_{t+1} = i_t^{cb} - r$ which implies

$$i_t^{cb} - r = \mathsf{E}_t \, \Delta m_{t+1} + \beta \, \mathsf{E}_t \, \Delta i_{t+1}^{cb} - \mathsf{E}_t \, \Delta \varepsilon_{t+1}$$

We have

$$\begin{split} & \mathsf{E}_t \, \Delta m_{t+1} = \mathsf{E}_t \, m_{t+1} - m_t \\ & \mathsf{E}_t \, \Delta i_{t+1}^{cb} = \mathsf{E}_t \, i_{t+1}^{cb} - i_t^{cb} \\ & \mathsf{E}_t \, \Delta \varepsilon_{t+1} = -\varepsilon_t \end{split}$$

An Alternative Story IV

▶ and so this is an equilibrium if

$$\mathsf{E}_t \, \Delta m_{t+1} = i_t^{cb} - r - \beta \, \mathsf{E}_t \, \Delta i_{t+1}^{cb} - \varepsilon_t$$

▶ If households expect no change in the policy interest rate, then

$$\mathsf{E}_t \, \Delta m_{t+1} = i_t^{cb} - r - \varepsilon_t$$

▶ and because $i_t^{cb} - r = \mathsf{E}_t \, \pi_{t+1}$

$$\mathsf{E}_t \, \Delta m_{t+1} = \mathsf{E}_t \, \pi_{t+1} - \varepsilon_t$$

- ▶ and expected inflation is related to expected money as we might expect
- This is fine for expected inflation but what about actual inflation?
- Recall that

$$m_t - p_t = y^f - \beta i_t + \varepsilon_t$$
$$i_t = i_t^{cb}$$

An Alternative Story V

- In assuming complete credibility, we are supposing that announcing a nominal interest rate is the same as announcing an inflation rate
- In terms of an equation

$$\pi_{t+1} = i_t^{cb} - r = \pi_{t+1}^{cb}$$

and therefore

$$\mathsf{E}_t \, \pi_{t+1} = \mathsf{i}_t^{\mathsf{cb}} - \mathsf{r}$$

The demand equation

$$m_t - p_t = y^f - \beta i_t + \varepsilon_t$$

implies

$$\Delta m_{t+1} - \pi_{t+1}^{cb} = -\beta \Delta i_t^{cb} + \Delta \varepsilon_{t+1}$$

• Suppose for simplicity that $\Delta i_t^{cb} = 0$

An Alternative Story VI

Then

$$\Delta m_{t+1} - \pi_{t+1}^{cb} = \Delta \varepsilon_{t+1}$$

and

$$\Delta m_{t+1} = \pi^{cb}_{t+1} + \Delta \varepsilon_{t+1}$$

Note that

$$\pi_{t+1} = \mathsf{E}_t \, \pi_{t+1}$$

Complications I

- What a lovely world!
- What can go wrong?

Deviations from announced inflation I

Suppose we still have

$$m_t - p_t = y^f - \beta i_t + \varepsilon_t$$
$$i_t = i_t^{cb}$$

but now we have

$$\pi_{t+1} = i_t^{cb} - r + \eta_{t+1} = \pi_{t+1}^{cb} + \eta_{t+1}$$

where

$$\mathsf{E}\,\eta_t = \mathsf{0}, \;\; \mathsf{E}\,\eta_t\eta_s = egin{cases} \sigma^2, \; t = s \ 0, \;\; t
eq s \end{cases}$$

- This can be interpreted as a deviation of the ex post real interest rate from the expected rate or a deviation of the inflation rate from the expected inflation rate
 - ► These are the same thing here

Deviations from announced inflation II

Therefore

$$\mathsf{E}_t \, \pi_{t+1} = i_t^{cb} - r = \pi_{t+1}^{cb}$$

• Because we still have that $\mathsf{E}_t \, \pi_{t+1} = i_t^{cb} - r$, we still have that

$$\mathsf{E}_t \, \Delta m_{t+1} = i_t^{cb} - r - \beta \, \mathsf{E}_t \, \Delta i_{t+1}^{cb} - \varepsilon_t$$

• If $E_t \Delta i_{t+1}^{cb} = 0$, then

$$\mathsf{E}_t \Delta m_{t+1} = i_t^{cb} - r - \varepsilon_t =$$

• and so we have in terms of expected inflation and money growth

$$\mathsf{E}_t \, \Delta m_{t+1} = \mathsf{E}_t \, \pi_{t+1} - \varepsilon_t$$

• In terms of actual inflation, we are supposing that

$$\pi_{t+1} = \pi_{t+1}^{cb} + \eta_{t+1} = \mathsf{E}_t \, \pi_{t+1} + \eta_{t+1}$$

Deviations from announced inflation III

From the demand for money, we have that

$$\Delta m_{t+1} - \pi_{t+1} = \Delta \varepsilon_{t+1}$$

- ullet where I suppose, as before, that $\Delta i_t^{cb}=0$
- Now we see that

$$\Delta m_{t+1} = \pi_{t+1}^{cb} + \eta_{t+1} + \Delta \varepsilon_{t+1}$$

- So far, so good
- This is not as good as it could be
- This has just supposed an error term and not built one into the model in a fundamental way

Expected change in interest rates I

- Thus far, we have been looking at the equilibrium with no expected change in interest rates
- Suppose there is an expected change in the interest rate
- What happens? Does inflation change? Presumably yes because the interest rate has changed
- More concerning: Is the expected change in the interest rate and the implied effect on the real quantitgy of money reflected in
 - a temporary change in the inflation rate?
 - a change in the nominal quantity of money?
- Suppose

$$m_t - p_t = y^f - \beta i_t + \varepsilon_t$$
$$i_t = i_t^{cb}$$
$$\pi_{t+1} = i_t^{cb} - r + \eta_{t+1} = \pi_{t+1}^{cb} + \eta_{t+1}$$

Expected change in interest rates II

• With $\Delta i_{t+1}^{cb} \neq 0$,

$$\Delta m_{t+1} = \pi_{t+1} - \beta \Delta i_{t+1}^{cb} + \Delta \varepsilon_{t+1}$$

$$\Delta m_{t+1} = \pi_{t+1}^{cb} + \eta_{t+1} - \beta \Delta i_{t+1}^{cb} + \Delta \varepsilon_{t+1}$$

$$\mathsf{E}_t \Delta m_{t+1} = \pi_{t+1}^{cb} - \beta \Delta i_{t+1}^{cb} + \mathsf{E}_t \Delta \varepsilon_{t+1}$$

- ullet where I suppose that $\mathsf{E}_t \, \Delta i^{cb}_{t+1} = \Delta i^{cb}_{t+1}$
- In this setup, the effect of the change in the interest rate on the demand for money is accomplished by a change in the nominal quanity of money
- This is a natural consequence of an exogenous inflation rate and an endogenous nominal quantity of money

Expected change in interest rates III

All is consistent with the prior analysis for other periods because

$$\Delta m_t = \pi_t^{cb} + \eta_t - \beta \Delta i_t^{cb} + \Delta \varepsilon_t$$

$$\Delta m_{t+1} = \pi_{t+1}^{cb} + \eta_{t+1} - \beta \Delta i_{t+1}^{cb} + \Delta \varepsilon_{t+1}$$

$$\Delta m_{t+2} = \pi_{t+2}^{cb} + \eta_{t+2} - \beta \Delta i_{t+2}^{cb} + \Delta \varepsilon_{t+2}$$

Unexpected change in interest rates I

- Now suppose there is an unexpected change in the interest rate
- How will we introduce this?
- We are considering rational expectations equilibria so we have to have

$$\mathsf{E}_t \left[i_{t+1}^{cb} - \mathsf{E}_t \, i_{t+1}^{cb} \right] = 0$$

- In other words, people cannot predict their own forecast errors
- We will want to distinguish between predictable and unpredictable changes
- The sort of algebra we are using will work better if the changes are a well defined stochastic process
- The process need not be the usual kind of constant variance process though
- The process might have occasional large changes and none much of the time

Unexpected change in interest rates II

- I won't specify that in detail
- Suppose that

$$i_{t+1}^{cb} = \mathsf{E}_t \, i_{t+1}^{cb} + \zeta_{t+1}$$

 $\mathsf{E}_t \, \zeta_{t+1} = 0$

• This specification for expectations of the interest rate, combined with a constant expected real interest rate, implies that

$$\pi_{t+1}^{cb} = \mathsf{E}_t \, i_{t+1}^{cb} - r$$

and is consistent with

$$\mathsf{E}_t \, \pi_{t+1} = \pi_{t+1}^{cb}$$

- Expected changes in the interest rate are no different than before so there is no reason to repeat that analysis
- Now though we can have a difference between actual and expected inflation

Unexpected change in interest rates III

- The interest rate nails down expected inflation but the actual interest rate may deviate from the expected interest rate
- What happens to actual inflation?
- Let's see how far we can get without additional assumptions
- Consider unexpected changes in the interest rate
- From the demand for money,

$$\Delta m_{t+1} - \pi_{t+1} = -\beta \Delta i_{t+1}^{cb} + \Delta \varepsilon_{t+1}$$

• From the analysis above, it follows that

$$\mathsf{E}_{t} \, \Delta m_{t+1} - \mathsf{E}_{t} \, \pi_{t+1} = -\beta \, \mathsf{E}_{t} \, \Delta i_{t+1}^{cb} - \varepsilon_{t}$$

and actual minus unexpected is

$$\Delta m_{t+1} - \mathsf{E}_t \, \Delta m_{t+1} - \left[\pi_{t+1} - \mathsf{E}_t \, \pi_{t+1} \right]$$
$$= -\beta \left[\Delta i_{t+1}^{cb} - \mathsf{E}_t \, \Delta i_{t+1}^{cb} \right] + \varepsilon_{t+1}$$

Unexpected change in interest rates IV

- Thus far, there has been no specification of how to get from expected inflation to actual inflation
- The growth rate of the nominal quantity of money can be written as

$$\begin{split} \Delta m_{t+1} - & \mathsf{E}_t \, \Delta m_{t+1} \\ &= \left[\pi_{t+1} - \mathsf{E}_t \, \pi_{t+1} \right] \\ &- \beta \left[\Delta i_{t+1}^{cb} - \mathsf{E}_t \, \Delta i_{t+1}^{cb} \right] + \varepsilon_{t+1} \end{split}$$

Note that

$$\Delta i_{t+1}^{cb} - \Delta \, \mathsf{E}_t \, i_{t+1}^{cb} = \zeta_{t+1}$$

Therefore

$$\Delta m_{t+1} - \mathsf{E}_t \, \Delta m_{t+1} = \pi_{t+1} - \mathsf{E}_t \, \pi_{t+1} - \beta \zeta_{t+1} + \varepsilon_{t+1}$$

• This is one equation to determine the two unknowns, $\Delta m_{t+1} - \mathsf{E}_t \, \Delta m_{t+1}$ and $\pi_{t+1} - \mathsf{E}_t \, \pi_{t+1}$

Unexpected change in interest rates V

- Suppose that the growth rate of the nominal quantity of money adapts to the ex post demand for money to maintain $\pi_{t+1} = \mathsf{E}_t \, \pi_{t+1}$
- Then

$$\Delta m_{t+1} = \mathsf{E}_t \, \Delta m_{t+1} - \beta \zeta_{t+1} + \varepsilon_{t+1}$$

- Suppose on the contrary that the actual and expected growth rate of money are equal, i.e. $\Delta m_{t+1} = \mathsf{E}_t \, \Delta m_{t+1}$
- Then

$$\pi_{t+1} = \mathsf{E}_t \, \pi_{t+1} + \beta \zeta_{t+1} - \varepsilon_{t+1}$$

- Possible resolution is description of adjustment process
- Friedman's spending adjustment
 - People want to reduce their money holdings
 - So they increase their spending
 - The whole point of the liquidity effect is that spending first increases on financial assets
 - ► Households try to use money to buy additional financial assets
 - ★ The riskfree government security here

Unexpected change in interest rates VI

- Households try to buy more securities, which tends to raise the price and lower the interest rate
- ▶ The central bank supplies the additional securities by selling them
- ► This reduces the central bank's balance sheet and reserves, thereby reducing the nominal quantity of money *m*
- ▶ As a result, Δm_{t+1} adjusts and p_{t+1} need not
- All of which implies

$$\Delta m_{t+1} - \mathsf{E}_t \, \Delta m_{t+1} \neq 0$$

 $\pi_{t+1} - \mathsf{E}_t \, \pi_{t+1} = 0$

- Alternatively, suppose that households increase their spending on final goods and services
 - Then nominal income increases because total spending on final goods and services equals nominal income
 - ▶ The increase in nominal income p + y (in logarithms) implies that p increases here because y is constant

Unexpected change in interest rates VII

Hence p increases and

$$\Delta m_{t+1} - \mathsf{E}_t \, \Delta m_{t+1} = 0$$

 $\pi_{t+1} - \mathsf{E}_t \, \pi_{t+1} \neq 0$

- One could of course imagine a case in which spending on both the riskfree government security and on final goods and services increase
 - This would suggest, with unspecified proportions for unexpected money growth and inflation,

$$\begin{split} & \Delta m_{t+1} - \mathsf{E}_t \, \Delta m_{t+1} \neq 0 \\ & \pi_{t+1} - \mathsf{E}_t \, \pi_{t+1} \neq 0 \\ & \left[\Delta m_{t+1} - \mathsf{E}_t \, \Delta m_{t+1} \right] - \left[\pi_{t+1} - \mathsf{E}_t \, \pi_{t+1} \right] = -\beta \zeta_{t+1} + \varepsilon_{t+1} \end{split}$$

General Equilibrium Analyses

- Cochrane found that standard New Keynesian models and DSGEs with monetary policy can be consistent with this neo-Fisherian view that raising interest rates will raise inflation
- Neo-Fisherian analysis not generally accepted
 - ▶ In fact, can generate harsh reactions
 - The importance of the liqudity effect is a strongly held belief

Empirical evidence on Neo-Fisherian View

- Crowder
- Must discuss orthogonal complement

Conclusion I

- I have yet to find a contradiction or problem
- I have not looked at the stability of the equilibrium, which is an issue
- I have not looked at learning, either Bayesian learning or regression learning
- The analysis I presented is not a model with optimizing agents
- It is consistent with a large class of optimizing models, as Cochrane shows

Stuff I

Leftover stuff

$$\Delta m_{t+1} = \pi_{t+1} - \beta \Delta i_{t+1}^{cb} + \Delta \varepsilon_{t+1}$$
$$\mathsf{E}_t \, \Delta m_{t+1} = \mathsf{E}_t \, \pi_{t+1} - \beta \, \mathsf{E}_t \, \Delta i_{t+1}^{cb} - \varepsilon_t$$