Monetary Economics Fixed-Income Securities Money and Bond Markets

Gerald P. Dwyer Fall 2015

Readings this Material

Cuthbertson and Nitzsche, Chapters 19 and 20

Readings Next Set of Slides

- Cuthbertson and Nitzsche, Chapters 21 and 22
- Skipping Sections 22.3 and 22.4

Outline

- Bond Market Overview
- Different Ways to Compute "Interest Rates"
- Bonds and Term to Maturity
- Term Structure and Rates Computed
- Additional Aspects of Bonds and Bond Trading
- Summary

Fixed-Income Securities

- Money Markets
- Bond Markets
- Term Structure of Interest Rates
- Duration, Convexity and Immunization

Fixed-Income Securities

- Money Markets
 - Instruments
 - Alternative ways of calculating return
- Bond Markets
 - What is return on a bond?
 - How estimate the price of a bond?

Money Markets

- A misnomer, but widespread
- Short-term fixed-income securities
 - Securities promise to make certain payments

Securities in Money Market United States

- All, or virtually all involve a payment today to the buyer and receipt of one payment in a year or less
- Treasury bills
 - Issued by U.S. Treasury
- Commercial paper
 - Issued by corporations
 - 90 days or less can be used as collateral at the Federal Reserve
 - Less than 270 days, a bearer instrument
 - 270 days or more, registered with the SEC

Securities in Money Market United States

- Certificates of deposit (CD)
 - Negotiable or non-negotiable
 - Normal CDs versus term CDs
 - Normal CDs pay interest at maturity
 - Term CDs pay interest semi-annually
 - Eurodollar CDs
 - Issued outside the U.S. in dollars
 - Yankee CDs
 - Issued by a non-U.S. bank with a U.S. branch and denominated in dollars

Securities in Money Market United Kingdom

- U.K. Interbank market
 - London Interbank Offer Rate (LIBOR)
 - Bank able to borrow at that rate
 - Denominated in dollars
 - London Interbank Bid Rate (LIBID)
 - Banks bid that rate for deposits
 - Denominated in different currencies
 - London Euro Interbank Offer Rate (EURIBOR)
 - Bank able to borrow at that rate
 - Denominated in Euro

Securities in Money Market United Kingdom

- Certificates of deposit
 - Negotiable or non-negotiable
 - Bearer instrument
 - Interest may be accrued at maturity or periodically
- Sterling floating-rate notes (FRN)
 - Interest rate floats
 - A fixed premium over LIBOR
 - Bearer instruments
 - Interest payable at three-month intervals

Securities in Money Market United Kingdom

Bill of Exchange

- Customer of a firm promises to make payment for goods at a later day
- Both seller of good and customer sign paper
- Seller of good can take paper to bank and receive funds or can sell it to another party
- At maturity, the holder of the bill of exchange goes to the firm's customer to get payment

Certificate of deposit

- Bearer instrument
- Interest may be accrued at maturity or periodically

Markets Related to Monetary Policy

- Fed Funds market
 - Banks borrow and lend reserves at the Federal Reserve to each other
 - Federal Reserve used to target this rate
 - Fed still announces a target range

Markets Related to Monetary Policy

Repo market

- Fed implements monetary policy by buying and selling government securities in the repo market
- Repo (Sale and repurchase agreement)
 - Sell a security today and promise to buy it back at a fixed price tomorrow or in a few days generally
 - Repo seller
- Reverse repo
 - Buy a security today and promise to sell it back at a fixed price tomorrow or in a few days generally
 - Repo buyer
 - Fed is using this term to denote their sales of securities with promise to buy back
- Repo rate is difference between purchase price and later sale price as a percentage

Characteristics of Short-term Securities

- Term a year or less usually meant
 - Can range from one day to one year
- Currency in which denominated
- Negotiable or not
- Fixed or floating rate
- Collateralized or not
- Rates are quoted in different, somewhat inconsistent ways

Quoting of Rates

Interest rate on security with a current value
 P, a final value FV

$$R = \frac{FV - P}{P}$$

- Called a "yield basis" in fixed-income markets
- This is simple conceptually but not so simple arithmetically
 - Treasury bill with a price of \$9900 and a face value of \$10,000

Quoting of Rates

• Interest rate on security with a current value P, a final value FV FV - P

 $R = \frac{FV - P}{P}$

- This is simple conceptually but not so simple arithmetically
 - Treasury bill with a price of \$9900 and a face value of \$10,000
 - Interest rate \$100/\$9800 = 1.02%
 - High or low?
 - Suppose interest rates on Treasury bills are 3 percent per year

Quoting of Rates

Two issues with

$$R = \frac{FV - P}{P}$$

- Dividing by price
 - Face values often nice round numbers
 - Prices are not
- What is term to maturity and how to make them comparable?

Quote Discount Rate

- Discount basis
 - Instead of $R = \frac{FV P}{P}$
 - Use the discount rate $d = \frac{FV P}{FV}$
 - FV of \$10000 and P of \$9900
 - d is 1 percent
 - R is 1.02 percent

Term to Maturity

 Data from the Federal Reserve on Treasury bill rates in September are

```
DATE 4-week 3-month 6-month 1-year 2014-10-17 0.03 0.02 0.05 0.10
```

- Percentage terms
 - .03 percent on 4-week Treasury bills
 - 3 basis points on 4-week Treasury bills
- Annualized
 - .03 basis points per year, not for 4 weeks
 - How annualized?

Treasury Bill Rates

- Board of Governors of Federal Reserve System
 - http://www.federalreserve.gov/releases/h15/update/
 - October 17, 2014 percent per year

```
Treasury bills
(secondary
market) 3 4
4-week 0.03
3-month 0.02
6-month 0.05
1-year 0.10
```

 Footnotes – "On a discount basis" and Annualized using a 360day year"

How Annualized?

- Using relatively simple arithmetic
 - Simple interest
- Suppose FV of \$10000 and price of \$9900 on 3-month Treasury bill
 - Number of days depends on exact months
 - Avoid confusion by supposing 1/4 of a year
 - 1/4 is simple if there are 360 days in the year
 - Annualize discount rate by multiplying term from 90 days to 360
 - Suppose original discount rate is 1 percent for three months
 - Will receive this for one-quarter of year (90/360)
 - Gross up interest rate by multiplying by 4=360/90
 - Annual discount rate 4 percent per year

Annualizing Using Simple Interest

 Annualized simple interest rate on a discount basis in percent per year

$$d = \frac{FV - P}{FV} \frac{a}{m} 100$$

- Multiplying by the number of days in a year, a, divided by the number of days to maturity, m, annualizes the return
- Multiplying by 100 results in interest rate in percent

Back to 4-week Rate

From Board's site for October 17, 2014

```
DATE 4-week 3-month 6-month 1-year 2014-10-17 0.03 0.02 0.05 0.10
```

- Looks like noticeable increase for longer term
 - Basis points (bps): 3 to 10
 - Annualized
- What are actual discount rates on these Bills?
 - Suppose 4 weeks is 30 days to simplify arithmetic
 - Annualization is 360/30=12, 360/90, 360/180 and 360/360
 - Convert back to real number of weeks by multiplying discount rate by 1/12 in basis points

Back to 4-week Rate

• From Board's site for October 17, 2014

```
DATE 4-week 3-month 6-month 1-year 2014-10-17 0.03 0.02 0.05 0.10
```

- One month is .03/12 = .0025 percent per month
- Three month is .02/4 = .005 percent per 3 months
- Six month is .05/2 = .025 percent per 6 months
- Twelve month is 0.10/1 = 0.10 percent per year
- These are the actual discount returns received over the term of the bills

Back to 4-week Rate

- Dollar magnitudes on a million dollars are small
- How much difference does it make if one receives .02 percent per year for three months or receives .03 percent pear year for three months?
 - Assume you have \$1 million
- Do yourself

Yield and Discount Basis

Yield basis with simple interest

$$R = \frac{FV - P}{P} \frac{a}{m}$$

Discount basis with simple interest

$$d = \frac{FV - P}{FV} \frac{a}{m}$$

Which Instruments Are Which? In the United States

- Treasury Bills and commercial paper are the most commonly encountered securities quoted on a discount basis
- CDs are quoted on a yield basis
- Some securities use a 365-day year and not a 360-day year
- In comparing rates on different securities, must have them on the same basis
- As a consumer, often quoted compounded rates

Simple Interest Rate

 Start with \$10,000 and consider 6-month CD paying 1 percent per year

$$R = \frac{FV - P}{a}$$

- 0.01 in proportional tePms pP year
- Over a six-month period, receive 0.005 percent for six months (discount basis)
- Will receive \$10,000 * (1+.005)=\$10,050
- Simple interest for a year
 - \$10,000 * (1+.0100)=\$10,100
 - Receive \$50 in middle of year and apparently no interest on that \$50

Compounded Interest Rate

Saw simple interest for a year

$$R = \frac{FV - P}{P} \frac{a}{m}$$

- $R = \frac{FV P}{P} \frac{a}{m}$ Suggests get twice as big an interest payment for a year as for six months
- Have \$50 for six months no interest on that
- Compound interest
 - Receive interest on the \$50 interest payment

Example of Compounded Interest Rate

- Have \$10,000
- Six-month interest rate is 1/2 percent
- Receive \$10,050 at end of six months
- Suppose get same interest rate for rest of year
- \$10,050 * 1.005 = \$10,100.25
 - More than \$10,100 one-half percent interest on interest payment of \$50
- Rate allowing for compounding is

```
$10,000 * (1+.005) * (1+.005) = $10,000 * (1+.005)^2 = $10,100.25
```

Compound Interest

- We see that compounding results in
 \$10,000 * (1+.005) * (1+.005) = \$10,000 * (1+.005)²=\$10,100.25
- With compounding, the semi-annual interest rate rh is an annual interest rate r of

$$r = (1+rh)^2 - 1$$

- If rh is 0.5 percent per half year, then annualized interest rate with compounding is 1.0025 percent per year, not 1 percent per year
- Can see this from

$$r = 2rh + rh^2$$

Compound Interest

- Compound interest seems unimportant here
- We see that compounding results in
 \$10,000 * (1+.005) * (1+.005) = \$10,000 * (1+.005)²=\$10,100.25
- Suppose that interest rate is 5 percent per six months

```
$10,000 * (1+.05) * (1+.05) = $10,000 * (1+.05)^2 = $11,025
```

• Without compounding

```
$10,000 (1+.1) = $11,000
```

Compound Interest

For a six-month security, see that

$$r = (1+rh)^2 - 1$$

- More generally, for a security that
 - Matures in m days
 - A payment only at maturity
 - With a year of a days
 - An interest rate to maturity of rm
 - The annualized compound interest rate is

$$r = \left(1 + rm\right)^{a/m} - 1$$

Bond Rates

- Yield basis uses compounding
- Zero-coupon bond
 - Often formed as strips of more conventional bonds
 - Payment at maturity only
 - P is current price and M is the payment at maturity n

$$P = \frac{M}{\left(1+r\right)^n}$$

- r is the spot yield for maturity of n
- Price is determined by demand and supply
- Price and spot yield are inversely related

Bonds

- Bonds typically have coupon payments in addition to a final payment
- Two-year bond
 - Pays \$500 (C) per year and has a final payment(M) of \$10,000
- What is "interest rate"?
 - "Coupon rate" is 5 percent per year on this bond
 - Ignores current price
- Internal rate of return is better measure

Bond Yield to Maturity

Internal rate of return, y, on a two-year bond

$$P = \frac{C_1}{1+y} + \frac{C_2}{(1+y)^2} + \frac{M}{(1+y)^2}$$

- If coupons are \$500 and final payment is \$10,000, yield depends on price
 - If price is \$10,000, then yield to maturity y is 5 percent per year
 - If price is \$9,000, then yield to maturity is 7.28%
 - If price is \$10,500, then yield to maturity is 1.64%

Bond Yield to Maturity with Semi-annual Payments

 For a two-year bond with semi-annual payments, formula is

$$P = \frac{C_1}{(1+y/2)} + \frac{C_2}{(1+y/2)^2} + \frac{C_3}{(1+y/2)^3} + \frac{C_4}{(1+y/2)^4} + \frac{M}{(1+y/2)^4}$$

- If didn't divide by two, would be computing yield to maturity per half year
- Equivalently, compute

$$P = \frac{C_1}{(1+y^*)} + \frac{C_2}{(1+y^*)^2} + \frac{C_3}{(1+y^*)^3} + \frac{C_4}{(1+y/2)^4} + \frac{M}{(1+y^*)^4}$$

- And then compute y = 2 times y^*

Holding Period Return

- After the fact, can compute holding period return
- If hold for a year and received a price at the end of TV, then

$$hpr = \frac{TV - P}{P}$$

 $hpr = \frac{TV - P}{P}$ • Future holding period return, just use expected receipts at end of period

Importance of Spot Rates

 In the market, when estimating a price for a bond, participants use spot rates, not yield to maturity

$$P = \frac{C}{(1+r_1)} + \frac{C}{(1+r_2)^2} + \frac{C}{(1+r_3)^3} + \dots + \frac{C+M}{(1+r_n)^n}$$

- Possibly different rates for each maturity
- If don't use these rates, there are possible arbitrage profits from stripping out the underlying payments into different securities

How Compute Spot Rates?

Suppose a two-year bond with annual payments

$$P = \frac{C_1}{(1+r_1)} + \frac{C_2 + M}{(1+r_2)^2}$$

- How compute r_2 ?
 - Know T-bill rate for one year and therefore know r_1
 - Know price and coupon payments and final payment
 - Just have to compute r_2
 - With semi-annual payments, it's only a bit more complicated
 - Called "bootstrapping spot rates"

Market Structure

- Bonds are traded over the counter, not on an organized exchange
 - Tends to be thin, i.e. relatively infrequent trading of particular securities
 - Newly issued Treasuries are the most commonly traded fixed-income securities with a term over one year
 - These are called "on-the-run" securities

Additional Aspects of Bonds

- There are important details which affect observed bond prices
 - Accrued interest for part of period
 - Provisions besides payments
 - Options to call bonds
 - Collateral
 - Credit risk on corporate bonds

- Money markets are markets for short-term funds
- Treasury Bills, Commercial paper and Certificates of Deposit are the most prominent in the United States
- T-bills and commercial paper are quoted on a discount basis
 - Convenient but not the same as bond-yield equivalent rates
 - Not hard to go from one to the other

- Rates received on securities less than a year typically are annualized by computing simple interest rates
 - Multiplying them up by the number of days in a year divided by the number of days to maturity (a/m)
 - Ignores compounding

- Compounded interest rates assume that all funds receive the same return over the life of the security
 - Raising one plus rate to power a/m
- Yield to maturity is a common way to quoting the return from owning a bond to maturity
 - Reflects compounding
 - Assumes all funds can be reinvested at the yield to maturity
 - Same as internal rate of return on a bond

- If a bond is not held to maturity, the holding period return is the best measure of the return
 - Issues of intermediate payments and annualization arise here too
- Spot interest rates on bonds are the interest rates today for each payment made, with all of the rates possibly being different
- Spot interest rates can be computed by "bootstrapping" them
 - First rate is the one-period rate and the rest are bootstrapped from that one

- Bonds are traded over the counter
- Markets for Treasury bills and recently issued longer-term Government securities are relatively liquid
- Corporate bonds are relatively illiquid
 - Different terms and different companies
 - Credit risk
 - Collateral has a unique value
 - Options to call bonds