Monetary Economics Portfolios' Risk and Returns Diversification and Risk Factors

Gerald P. Dwyer Fall 2015

Reading

- Chapters 11-13, not Appendices
- Chapter 11
 - Skip 11.2
 - Mean-variance optimization in practice
- Chapter 12
 - Skip 12.2 Portfolio Inputs and the SIM
 - Skip 12.3
 - Combining Active and Passive Portfolios
- Chapter 13
 - Skip 13.5
 - Testing the CAPM and Multifactor Models
- Chapters 19 and 20 next time

Risk Factors and Diversification

- International diversification of portfolios
- Factor models of returns
 - Single-index model
 - Arbitrage Pricing Theory (APT)

International Diversification

- Subject of a lot of research
- Home bias puzzle
 - Investors have too few foreign stocks in their portfolio
 - Important because a diversified portfolio has a lower variability of returns when adding stocks
 - Foreign stocks add returns with lower correlations
 - Correlation of returns across countries has been increasing over time since 1950s

Foreign Stocks

- What is a foreign stock?
 - Stock traded on a foreign exchange
 - Same stock traded on different exchanges should trade for the same price in any one currency
 - Stocks traded on an exchange in the country with headquarters
- Why are foreign stocks different than domestic stocks?
 - Headquarters in a different country typically
 - In the same industry, different distribution of business across countries
 - Different industries, different products

Home Bias Puzzle

 Investors in various countries hold fewer foreign stocks than would be suggested by diversification including foreign stocks

Home Bias Puzzle

- Investors in various countries hold fewer foreign stocks than would be suggested by diversification including foreign stocks
- Explanations:
 - Behavioral
 - Legal restrictions
 - Unfamiliar with foreign firms and legal structure
 - Prefer returns in domestic currency

International Diversification

- Foreign stock return has two parts
 - Stock return itself
 - Change in exchange rate

$$R_{us}^{u} = R_{For} + R_{S}$$

- $-R_{us}^{u}$ is the unhedged return to a U.S. investor from a foreign stock
- $-R_{For}$ is the return on a foreign stock in local currency (e.g. British company in Pounds sterling)
- $-R_s$ is the part of the return due to a change in the exchange rate

International Diversification

- Foreign stock return has two parts
 - Stock return itself
 - Change in exchange rate

$$R_{us}^{u} = R_{For} + R_{S}$$

- $-R_S = (S_1 S)/S$ is the proportional change in the exchange rate
 - S is the current spot exchange rate
 - S_1 is the future exchange rate when the stock is sold

Hedging Exchange Rate Risk

- Instead of receiving actual future exchange rate in $R_{us}^u = R_{For} + R_S$
 - Risk can be reduced by purchasing foreign exchange when the transaction is made
 - Roughly $R_{us}^h = R_{For} + (F S) / S$
 - where F is the current forward rate for buying foreign exchange

Hedging Exchange Rate Risk

- Instead of receiving actual future exchange rate in $R_{us}^u = R_{For} + R_S$
- Receive $R_{us}^h = R_{For} + (F S)/S$
 - Roughly
 - Because don't know amount will receive or date
 - Can periodically adjust hedge to overcome this

Hedged or Unhedged Foreign Investments?

- Research unsurprising: Sometimes do better with one and sometimes with the other
 - Evidence may lean toward hedged investments have done better for U.S. investors
- General considerations
 - Depends on covariances of returns
 - No reason to think that hedging reduces covariances
 - It may reduce a source of risk but it may pay to be "exposed to this risk"

Factor Models of Returns

- The CAPM can be interpreted as a subset of factor models
- CAPM equation $R_S = r + \beta (R_m r) + \varepsilon_S$
- Single-factor model

$$R_{S} - r = \beta (R_{m} - r) + \varepsilon_{S}$$

Expected return

$$ER_s - Er = \beta(ER_m - Er)$$

Ford Motor Company's Excess Return

CRSP's Excess Return

ER_VWCRSP

Ford (red) and CRSP (blue)

Single Index Model (SIM)

Single risk factor

$$R_{S} - r = \alpha + \beta (R_{m} - r) + \varepsilon_{S}$$

- Constant term α need not equal zero
 - On average the error term ε_s is zero

Estimate Beta

Dependent Variable: ER_FORD

Method: Least Squares

Date: 10/20/13 Time: 14:45 Sample: 2002M01 2012M12 Included observations: 132

 $ER_FORD = C(1) + C(2) * ER_WCRSP$

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2)	0.002866 2.095982	0.012610 0.270837	0.227280 7.738901	0.8206 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.315395 0.310129 0.144305 2.707117 69.23667 59.89059 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion rion n criter.	0.011499 0.173739 -1.018737 -0.975059 -1.000988 2.334773

Estimate Beta 2002 to end of 2006

Dependent Variable: ER_FORD

Method: Least Squares

Date: 10/20/13 Time: 14:50 Sample: 2002M01 2006M12 Included observations: 60

 $ER_FORD = C(1) + C(2) * ER_WCRSP$

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2)	-0.015589 1.890036	0.012125 0.334707	-1.285652 5.646840	0.2037 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.354744 0.343619 0.092825 0.499753 58.50329 31.88680 0.000001	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Wats d	nt var terion rion n criter.	-0.005147 0.114574 -1.883443 -1.813631 -1.856136 2.481422

Estimate Beta 2009 to end of 2012

Dependent Variable: ER_FORD

Method: Least Squares

Date: 10/20/13 Time: 14:53 Sample: 2009M01 2012M12 Included observations: 48

 $ER_FORD = C(1) + C(2) * ER_WCRSP$

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2)	0.021127 2.392181	0.026905 0.513496	0.785247 4.658620	0.4363 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.320559 0.305789 0.180401 1.497051 15.11585 21.70274 0.000027	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion rion n criter.	0.052673 0.216518 -0.546494 -0.468527 -0.517030 2.065772

Event Studies

 Can use the result of estimating the CAPM or SIM – the residuals – to examine the effects of announcements

$$R_{S} = r + \beta (R_{m} - r) + \varepsilon_{S}$$

Estimate the equation

$$R_{S} = r + \widehat{\beta} (R_{m} - r) + \widehat{\varepsilon}_{S}$$

Calculate

$$\widehat{\varepsilon}_{S} = R_{S} - r + \widehat{\beta} \left(R_{m} - r \right)$$

- Look at residual associated with event
 - Were returns higher or lower than would expect given the market return?

Figure 3 : Event study

An Interesting Result

- Stock issues and repurchases generate lower returns
- Low returns tend to persist for a few days
- Analyst recommendation changes and announcement of changes in dividends also tend to have persistent effects
- Not entirely consistent with an efficient market

Figure 4: Cumulative abnormal returns

Event time in trading days, relative to "event-day" at t=0

CAPM and Mean-Variance Portfolio Theory

- Mean-variance portfolio theory and the CAPM are intimately related
- If the mean-variance portfolio theory is correct, the CAPM for returns is implied

$$R_{S} = r + \beta (R_{m} - r) + \varepsilon_{S}$$

 As we saw before, the implication for excess returns on stocks is that

$$ER_s - Er = \beta_s (ER_m - Er)$$

 Expected excess returns vary across stocks only due to different betas

Arbitrage Pricing Theory

 APT for an individual stock, say A, is a multifactor model

$$R_A = a_A + b_{A,1}F_1 + b_{A,2}F_2 + \dots + b_{k,A}F_k + \varepsilon_A$$

 The implied pricing equation for the cross section of returns is the more general

$$ER_{s} = \lambda_{0} + \lambda_{1}b_{1,s} + \lambda_{2}b_{2,s} + ... + \lambda_{k}b_{k,s}$$

For s=A,B,...,i.e., all stocks

APT and Idiosyncratic Risk

APT has

$$R_A = a_A + b_{A,1}F_1 + b_{A,2}F_2 + \dots + b_{k,A}F_k + \varepsilon_A$$

• The term ε_A is idiosyncratic risk and can be diversified away, as in CAPM

Arbitrage Pricing Theory

- If the stock market is efficient, then the excess return on stocks reflect news
- News consists of unexpected changes in factors

Fama-French Three Factor Model

- Can interpret factors
 - Excess return on market
 - Book to market values
 - Firms' sizes
- As "risk factors" in the APT

Summary

- It is widely thought that international diversification is worthwhile
 - The evidence is not so strong that someone who was quite doubtful it is worthwhile would be convinced it is worthwhile
 - The evidence is strong enough that someone who wasn't sure would be convinced it is worthwhile
- Financial economists convinced enough to have created the "Home bias puzzle"

Summary

- Factor models of returns are a very general way of thinking about stocks
- Expected excess returns above the riskfree rate reflect risk factors
- The sensitivity of a stock to a risk factor determines the effect of the risk factor on the stock's expected return