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What does nonlinear mean?

A time series is linear if its evolution can be summarized as

yt = µ +
∞

∑
i=0

ψi εt−i

where the sequence {εt−i} is independent and identically distributed

I ARCH models are nonlinear, as are stochastic volatility models
I Linear in mean function though

Wold’s theorem tells us that any stationary stochastic process has the
representation

yt = δt +
∞

∑
i=0

wiet−i

where δt is deterministic and the sequence {et−i} has constant
variance and is serially uncorrelated

I This representation does not necessarily capture all of the predictable
features of the data

I That is, ARMA models are not the beginning and end of data analysis



Does nonlinearity matter?
Unemployment rate in U.S.
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Does nonlinearity matter for financial economics?

Unemployment rate is not time reversible

Not so obvious for returns

I High and changing volatility
I Depends on data being examined and question being asked
I Zumbach has forcefully argued that asset returns are not time reversible
I In another context, think of arbitrage between the cash and futures

prices of some asset

F For example, S&P 500 futures in U.S. in the 1980s
F How futures and cash prices change to become equal is likely to depend

on how far cash is from futures
F Arbitrage not worthwhile if there is little difference, arbitrage

worthwhile if there is a large difference
F Suggests possibly faster convergence to futures and cash prices being

equal when deviations are bigger
F Dwyer, Locke and Yu (1996)
F “Nonlinear Time Series and Financial Applications” (2003) available at

www.jerrydwyer.com summarizes some material



Arbitrage between futures and cash values of S&P 500
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Arbitrage between futures and cash

The logarithm of the basis is

bt = t fT − pt

where t fT is the logarithm of the futures price at t expiring at T , pt
is the fair value of the cash price at t including dividends and interest

A linear characterization might be

bt = βbt−1 + εt , 0 < β < 1

E εt = 0, E ε2t = σ2, E εtεs = 0 ∀ t 6= s

I Implied behavior when basis is nonzero is to converge at the rate β



Threshold autoregression for basis

Threshold autoregression

bt = βubt−1 + εt if c < bt−d

bt = βcbt−1 + εt if − c < bt−d < c

bt = βlbt−1 + εt if bt−d < −c

I βu, βc , and βl allowing for different speeds of convergence
I c divides the deviations of the basis into regions based on the size of

the deviation from zero
I d is the delay between the time that the basis deviates from zero by

some amount and the change in behavior occurs
I Estimated parameters are βu, βc , and βl , c , d and the variance of εt
I In actual application, the equations are more complicated

F A vector error correction mechanism in the futures and cash prices



Median impulse response to a unit shock from futures
market



Which nonlinear model?

There are an infinite number of possible alternative nonlinear models

Some relatively readable references

I Bendat, Julius S. 1990. Nonlinear System Analysis and Identification
from Random Data. New York: John Wiley & Sons.

I Bendat, Julius S. 1998. Nonlinear System Techniques and
Applications. New York: John Wiley & Sons, Inc.

I Priestley, M. B. 1988. Non-linear and Non-stationary Time Series
Analysis. London: Academic Press.

I Ramsey, James B. 1990. “Economic and Financial Data as Nonlinear
Processes,” in The Stock Market: Bubbles, Volatility, and Chaos,
edited by Gerald P. Dwyer, Jr. and R. W. Hafer, pp. 81-134. Boston:
Kluwer Academic Publishers.

I Tong, Howell. 1990. Non-linear Time Series: A Dynamical Systems
Approach. Oxford: Clarendon Press.



How to choose which nonlinear model

Let subject matter guide the choice of type of nonlinearity

I For example, threshold autoregression above when analyzing arbitrage
I Obviously, you want some familiarity with different nonlinear models to

make choice

A short selection

I Threshold autoregression
I Smooth transition autoregression
I Bilinear model
I Markov switching model



Threshold autoregression

Threshold autoregressions can be thought of as piecewise linear
models

I If you use enough regimes, you probably can characterize almost
anything reasonably well

F That’s actually not very comforting because you have to estimate the
regimes

I A k-regime self-exciting threshold autoregression for regime j is

yt = ϕj
0 + ϕj

1yt−1 + ... + ϕj
pyt−p + εjt if γj−1 ≤ yt−d < γj

where

F j = 1, ..., k is the regime
F ϕj

i are parameters in regime j
F d is the delay (d > 0)

F
{

εjt

}
is an iid sequence with zero mean and variance σ2

j
F γj are the thresholds that determine the regime

I Called “self-exciting” because values of the variable being examined (yt
here) determine the regime



Smooth transition autoregression (STAR)

Discontinuity across regimes not always appealing

STAR model for two regimes

yt = c0 +
p

∑
i=1

φ0,iyt−1 + F

(
yt−d − ∆

s

)(
c1 +

p

∑
i=1

φ2,iyt−1

)
+ εt

I d is the delay parameter
I ∆ and s are parameters representing the location and scale that affects

model transition (define zt =
yt−d−∆

s )
I F () is a smooth transition function to determine the weight given to

c1 +
p

∑
i=1

φ2,iyt−1

F F () can be a logistic function or an exponential function or a
cumulative distribution function

F F () usually is bounded between zero and one
F Logistic F () = 1

1+exp(−γzt )

F Exponential F () = 1− exp
(
−z2t

)



Bilinear model

Bilinear model

yt = c +
p

∑
i=1

φiyt−1 +
q

∑
j=1

θj εt−j +
m

∑
i=1

s

∑
j=1

βijyt−i εt−j + at

I Includes ARMA terms and products of lagged values and lagged
innovations

I Usually just a few



Markov switching autoregressive model (MSA)

Maybe used more in economics (especially macroeconomics) than
finance

yt =


c1 +

p

∑
i=1

φi ,1yt−1 + ε1t if st = 1

c2 +
p

∑
i=1

φi ,2yt−1 + ε2t if st = 2


I The innovation

{
ε1t
}

and
{

ε1t
}

are sequences of iid random variables
with mean zero and finite variance independent of each other

I The state st is 1 or 2 for state 1 or 2 (usually just 2 states)
I The states are determined by a first-order Markov chain with

transitional probabilities

Pr (st = 2|st−1 = 1) = w1

Pr (st = 1|st−1 = 2) = w2

I 1/w1 and 1/w2 are the expected durations of the process to stay in
each state given that st is in that state



Hamilton Markov-switching model I

The Hamilton model – which can be called the Markov Switching
Autoregressive Model – allows for serially correlated deviations
between the actual value and the predicted value and effects of being
in a different regime

Let

µt(st) = βstyt−1

which implies

yt = µt(st) + εt,st

In addition to these dynamics, suppose that

[1−
p

∑
i=0

ρi (st) Li][yt − µt(st)] = εt,st



Hamilton Markov-switching model II

For p = 1, this implies

yt = µt(st) + ρ1(st)[yt−1 − µt−1(st−1)] + εt,m

= βstyt−1 + ρ1(st)[yt−1 − µt−1(st−1)] + εt,m

This specification implies that past errors in past states
yt−1 − µt−1(st−1) affect the current dynamics

This model commonly is used to estimate the probability of two
states of the economy, which might be called “recession” and “not
recession”

The model then is used to predict the probability of a recession



Other nonlinear models

Kernel regressions
yt = m (yt−j ) + εt

I m (yt−j ) is some function of lagged values of variable in the
neighborhood of similar values

I Simple example: Suppose the set of lagged values is only the first lag,
yt−1, and there are repeated observations on a value of yt−1,
.01± .001

I Then m (yt−1) is the average yt−1 when yt−1 = .01± .001
I Can get more complicated and allowing for weighting but that’s the

basic idea

Neural networks

I Approximating function to arbitrary functions
I Very general but not easy to disentangle into meaningful components



Tests for nonlinearity

Many such tests, no single best one in all circumstances

I Power of test depends on the alternative
I Probably best to pick tests partly based on what sort of nonlinearity is

plausible

Tests

I There are many such tests and I mention the tests that may be most
common

I McLeod-Li
I Bispectral test
I BDS test
I Ramsey RESET test
I Time reversibility test



McLeod-Li test

McLeod-Li test is based on the Ljung-Box test applied to squared
residuals

Q (m) = T (T + 2)
m

∑
i=1

ρ̂2i
T − i

where ρ̂2i is the lag i autocorrelation of the squared residuals if an
ARMA(p,q) model

Under the null hypothesis, Q (m) ∼A χ2
m−p−q

Similarly, could do Engle regression test for conditional
heteroskedasticity

Possibly most powerful at determining whether conditional
heteroskedasticity is important



Bispectal test

The bispectral test has a null hypothesis of linearity and normality of
the errors of some specified model

Basic idea is very simple: If a time series is linear and normal, then
higher-order moments are zero

I Use spectral analysis to examine this in detail
I Beyond the scope of this course to go into details on it

Test is easy to use

I Richard Ashley and Douglas Patterson have implemented it in a
convenient program available from them

I Melvin Hinich (1982) introduced the test

Test works well in practice



BDS test

Brock, Dechert and Scheinkman (BDS) proposed a test motivated by
chaos theory

Null hypothesis is that a series is iid

Basic idea is very simple: If a time series is iid, then the series should
be spread evenly over the space of values

I If the series is not iid, values can cluster around each other
I Test applies this not only to distance between one residual and other

residuals but also distance between a set of values and other sets of
values

I Measures closeness by least upper bound and then counts observations
that are at least within a distance δ of each other

Test works well in practice



RESET test

Test is due to James Ramsey (1969)

Introduced as a general specification test for whether a regression is
correctly specified

Two regressions are used to examine the specification

I Run a regression, say an autoregression on one lagged value yt−1, and
get residuals et and predicted values ŷt

I Run a second regression of the first regression’s residuals et on the
right-hand-side variables in the first regression yt−1 and on powers of
the predicted values ŷt , that is, ŷ2t , ŷ3t , ...

I If the first regression is adequate, then the coefficients of the lagged
values and the powers of the predicted values should all be zero

I If the first regression is adequate, an F-statistic for the second
regression has an F distribution with appropriate degrees of freedom



Time reversibility tests

Distribution of innovations is invariant to reversal of time indices if the
series is normally distributed and the equation is correctly specified

TR test (Ramsey and Rothman 1996)

Motivation

I Consider unemployment rate with gradual decreases, apparently
unpredictable changes, and sharp increases in recessions

I These sharp increases appear in the residuals if the estimated
relationship does not predict sharp increases

I These sharp increases appear as sharp decreases if the time direction is
reversed

I The distribution of the residuals is not invariant to the time direction if
the estimated relationship is not adequate

Seems to work reasonably well in practice



Unemployment rate and time reversibility
Unemployment rate in U.S. would have gradual increases and fast
increases if time ran backwards
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Forecasting with nonlinear models

Deriving forecasts from a nonlinear model is more complicated than
for a linear model

Two issues

I The forecasts depend on the initial conditions and the evolution
generally cannot be summarized by sets of statistics

I The existence of different states, e.g. in the threshold model or Markov
switching model, increases this dependence on the precise initial state

It is difficult to say what is “typical”



Summary

While ARMA and ARCH models are informative, they are not the last
word in time-series analysis

Many time series have characteristics that are not reflected in ARMA
and straightforward ARCH and GARCH models

I Time reversibility
I Nonlinear relationships between prices and returns

There are an infinite number of possible nonlinear models

Let the subject matter determine which nonlinear models are likely to
be informative

There are a variety of tests for nonlinearity
I Let the form of the nonlinearity expected determine what test to use
I Or just estimate the nonlinear model and examine whether it has a

better fit than a linear model by a well-defined test



Conclusion

Nonlinear models can be informative but are complicated to estimate

More judgment involved than in estimating a linear regression

I Judgment can be more important when nonlinearity is important
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