Financial Econometrics Value at Risk

Gerald P. Dwyer

Trinity College, Dublin

January 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- Introduction
- VaR
- RiskMetricsTM

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Summary

Risk

- What do we mean by risk?
 - Dictionary: possibility of loss or injury
 - Volatility a common measure for assets
 - Two points of view on volatility measure
 - ★ Risk is both good and bad changes
 - \star Volatility is useful because there is symmetry in gains and losses

What sorts of risk?

- Market risk
- Credit risk
- Liquidity risk
- Operational risk
- Other risks sometimes mentioned
 - ★ Legal risk
 - ★ Model risk

Different ways of dealing with risk

- Maximize expected utility with preferences about risk implicit in the utility function
 - What are problems with this?
- The worst that can happen to you
 - What are problems with this?
- Safety first
 - One definition (Roy): Investor chooses a portfolio that minimizes the probability of a loss greater in magnitude than some disaster level
 - What are problems with this?
 - Another definition (Telser): Investor specifies a maximum probability of a return less than some level and then chooses the portfolio that maximizes the expected return subject to this restriction

Value at risk

- Value at risk summarizes the maximum loss over some horizon with a given confidence level
 - Lower tail of distribution function of returns for a long position
 - Upper tail of distribution function of returns for a short position
 - ★ Can use lower tail if symmetric
 - Suppose standard normal distribution, which implies an expected return of zero

- 99 percent of the time, loss is at most -2.32634
 - ★ 1 percent of the time, loss is at least -2.32634
- ▶ 99.99 percent of the time, loss is at most -3.71902
 - ★ 0.01 percent of the time, loss is at least -3.71902

Illustration with a normal distribution

Lower tail of distribution

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Tail of distribution

- Almost by construction, we care about unusual events, "the tail of the distribution"
- How frequently do we see these events? Suppose daily data
 - I percent of the time: 1 day out of every 100
 - ★ Couple of times a year
 - 0.1 percent of the time: 1 day out of every 1,000
 - ★ Once every four years
 - 0.01 percent of the time: 1 day out of every 10,000
 - ★ Once every 40 years
 - 0.001 percent of the time: 1 day out of every 100,000
 - ★ Once very 400 years
- At some point, a question arises whether the data include the risk
 - ► For example, 2000 to 2006 there was no financial crisis in Ireland
 - Are recent events from the same distribution?

Stress Testing

One interpretation of stress testing is to go far out in the tail of the distribution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- What are some pitfalls?
- Another interpretation is to test what happens in some scenario
 - More than a little subjective

Formal definition of VaR

- Value at risk (VaR) is based on the tail of the distribution
 - Let ∆V (ℓ) be the change in the value of assets over the next ℓ periods from t to t + ℓ
 - Let $F_{\ell}(x)$ be the cumulative distribution function (CDF) of $\Delta V(\ell)$
 - Let *p* be the probability of a loss this large or larger
 - Then, for a long position with $\Delta V\left(\ell
 ight) < 0$

$$p = \Pr\left(\Delta V\left(\ell\right) \le VaR\right) = F_{\ell}\left(x\right)$$

- ▶ The loss is smaller in magnitude than VaR (i.e. $\Delta V(\ell) > VaR$) with probability 1 p
- VaR is the p-th quintile
- ▶ Definition of quintile: For any univariate CDF F_ℓ(x) and probability p with 0 ℓ</sub>(x) is

$$x_{p} = \inf \left\{ x | F_{\ell} \left(x \right) \ge p \right\}$$

where inf is the operator generating the smallest real number x such that $F_{\ell}(x) \ge p$.

Example

VaR

$$\mathit{p} = \Pr\left(\Delta V\left(\ell
ight) \leq \mathit{VaR}
ight) = \mathit{F}_{\ell}\left(x
ight)$$

- Suppose using a probability of 1 percent
- Suppose invest \$100 and the distribution of value changes is standard normal with zero mean and a variance of one
- The probability of a loss less than or equal to -\$2.33 is 1 percent
- The value at risk is -\$2.33 using this probability
- This is the same as the 1 percent quintile of the standard normal distribution, which is -2.32634
- How would this differ if the mean were six percent and the standard deviation were one?

RiskMetricsTM overview

- RiskMetricsTM estimation strategy
 - One goal is to estimate relatively few parameters
 - ★ Otherwise estimation error will overwhelm everything else
 - Another goal is to have a fairly objective estimation strategy
 - ★ Few, or better no, subjective decisions made about what parameters to include or exclude
- Technical documents can be found at the course website
- Used IGARCH model until change in 2006
- Problems with IGARCH
 - ▶ There is "long memory" in volatility not reflected in IGARCH
 - Autocorrelations of squared returns do not decrease exponentially as indicated for linear and ARCH systems

RiskMetricsTM overview

- LM-ARCH long memory ARCH
- Variances at different time scales used and weighted with exponential decay
 - Mean return not zero, especially for stocks and bonds
 - ★ Quantitatively small effects but introduce clear deviations from forecasted volatilities
 - Use autoregressive components from the last two years and estimate mean return over last two years
 - ★ I will suppress this
 - IGARCH(1,1) is

$$\begin{split} r_t &= \sigma_t \varepsilon_t, \quad \mathsf{E} \, \varepsilon_t = 0, \quad \mathsf{E} \, \varepsilon_t^2 = 1 \\ \sigma_t^2 &= \alpha_0 + \beta_1 \sigma_{t-1}^2 + (1 - \beta_1) \left(\sigma_{t-1} \varepsilon_{t-1} \right)^2 \\ 0 &< \beta_1 < 1 \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

RiskMetrics process

- RiskMetrics setup (2006) is rather more complicated
- Underlying IGARCH(1,1) process with the weight determined by parameters μ_k

$$r_{t} = \sigma_{t}\varepsilon_{t}$$
(1)

$$\sigma_{t}^{2} = \sum_{k=1}^{k_{\max}} w_{k}\sigma_{k,t}^{2}$$

$$w_{k} = \frac{1}{C} \left(1 - \frac{\ln \tau_{k}}{\ln (\tau_{0})}\right)$$

$$\tau_{k} = \tau_{1}\rho^{k-1} \quad k = 1, ..., k_{\max}$$

$$\sigma_{k,t}^{2} = \mu_{k}\sigma_{k,t-1}^{2} + (1 - \mu_{k}) r_{t}^{2}$$

$$\mu_{k} = \exp\left(-\frac{1}{\tau_{k}}\right)$$

Pages 8 and 9 of long document
 τ_k = τ₁ρ^{k−1} determines weights

Risk and Financial Crisis of 2007-201?

- Much of losses were not predictable
- Increase in volatility used to forecast continued higher volatility
- Were the events consistent with risk models?
- Finger (2008) argues "yes"
 - Not extraordinary given history of 108 years in the U.S.
 - Would have been extraordinary given estimated parameters over five years of data

- "Extraordinary" means "not consistent with a model of risk"
- Dowd argues there was a massive failure of VaR models
 - Argues their use by regulatory authorities is particularly "mad"

Level and Volatility of CRSP Daily Index Returns

vwretd

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 シタぐ

Absolute Value of Daily Returns

ABS_VWRETD

▲ロト ▲聞 と ▲ 語 と ▲ 語 と 一 語 … の Q ()~

Squared Daily Returns

SQ_VWRETD

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Graphs Summarizing the Distribution of Returns

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Histogram
- Kernel Density
- Cumulative Distribution Function (CDF)

Summary

- Risk has various definitions
- In Finance, risk includes gains and losses
- For Value at Risk, it is the probability of losses that is estimated
- Value at Risk attempts to estimate aspects of the lower tail of the distribution
- GARCH models for recent years are a common way to measure Value at Risk

- Stress tests are another way to estimate risk
 - Scenarios are limited by practicality and imagination

The end

Notes on EViews

- getting density, cdf etc.
 - Open file with series listed by double-clicking on name
 - Go to View and then Graph
 - Choose Distribution as specific and then can choose density, cdf, etc.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで