Financial Econometrics Event studies

Gerald P. Dwyer

Trinity College, Dublin

January 2016

Outline

- Event Studies
 - Overview of Event Studies
 - Event Studies
 - Informativeness of Event Studies
 - Summary

Event studies

- Very useful way to examine effects when an event and associated news can be isolated from other developments
- Campbell, Lo and MacKinlay (1997, Ch. 4)
 - Use their notation
 - Returns can be proportional or logarithmic
 - ► Log returns generally are simpler because return over a N periods is just the sum of the N returns a linear operation
- A relatively recent survey is Kothari and Warner (2007, "Econometrics of Events Studies" in Handbook of Corporate Finance)

Overview of event studies

- Event studies examine the effect of some event or set of events on the value of assets
 - ▶ Loosely speaking, a t-test of the change in price of some asset
 - Unexpectedly large increase or decrease relative to standard deviation of typical change
- Normal and abnormal return

$$R_t = R_t^n + R_t^a$$

- \triangleright where R_t is observed return
- $ightharpoonup R_t^n$ is normal return
 - ★ Normal return is what we observe usually
- $ightharpoonup R_t^a$ is abnormal return, return associated with some event
 - ★ $ER_t^a = 0$ is the unconditional expectation of abnormal return
 - * Return with abnormal return is effect of event, $R_t^a \neq 0$ if event affected returns

Change in asset price

- Effect of news on an asset price
 - News is unexpected
- Get unexpected part of change in asset prices
 - Firms' stock prices
 - Exchange rates
 - Bond prices
- For many of these assets, change in price itself is unexpected
 - If asset prices were random walks, the change itself would be unexpected
 - Frequent trading relative to event window is helpful for the news being reflected in price

Types of events

- Earnings announcements
- Insider trading
- Stock splits
- Issuance of new debt
- Borrowing from a bank
- Merger or takeover announcement
- Regulatory changes
 - Can estimate who gains and who loses
 - Examples
 - Banking regulations
 - Pollution regulations

What is an event?

- Some change, development, announcement that may produce a relatively large change in the price of the asset over some period
 - ▶ Define an event window a period over which the event occurs
 - ▶ Define an estimation window a period over which parameters are estimated
 - Want the event window to be short relative to the estimation window
 - ★ Estimation window commonly is 120 trading days (roughly six months)
 - ★ Event window commonly measured over a few days

Event window

- Have data for a time period from T_0 to T_3
- T₀ is the date at which data start
- T₃ is the date at which data end
- T₁ is the start of the event window,
 - Start of period when asset price might be affected by news
- T₂ is the end of the event window
 - ► End of period when asset price might be affected by news

Event window

- Estimation window used to estimate parameters
- Event window used to estimate abnormal price change
- Post-event window used to verify that returns go back to "normal"
 - "Normal" is similar to pre-event window (estimation window)

Construct measure of normal and abnormal returns

- Normal return is return in estimation window and post-event window
- Abnormal return is return in event window if news affected price
 - "Normal" here just means typical
 - "Abnormal" just means atypical
- Normal and abnormal return

$$R_t = R_t^n + R_t^a$$

- ▶ where R_t is observed return
- $ightharpoonup R_t^n$ is normal return
- R_t^a is abnormal return
- In estimation window,

$$E R_t^a = 0$$

• In event window, if event affected returns,

$$ER_t^a \neq 0$$

Estimate abnormal return with constant mean return

Constant mean expected return, random walk with drift, is

$$R_t = \alpha + \varepsilon_t$$

- \blacktriangleright where R_t is observed return
- $\triangleright \alpha$ is the mean return
- \triangleright ε_t is the "abnormal return"
 - ★ Mean is zero in estimation period
- Estimate α in estimation period, giving $\widehat{\alpha}$
- In estimation window, by construction, average abnormal return is

$$\bar{R}_t^a = \bar{R}_t - \widehat{\alpha} = 0$$

In event window

$$R_t^a = R_t - \widehat{\alpha}$$

▶ Test whether $E R_t^a = 0$

Estimate abnormal return by market model

 Common model of returns reflects changes in the overall market, the so-called "market model"

$$R_t = \alpha + \beta R_t^m + \varepsilon_t$$

- ▶ where *R_t* is observed return
- $ightharpoonup R_t^m$ is the market return
- \triangleright α and β are the parameters estimated by least squares
- \triangleright ε_t is the "abnormal return"
 - ***** Mean of ε_t is zero in estimation period
- **E**stimate α and β in estimation period, giving $\widehat{\alpha}$ and $\widehat{\beta}$
- In estimation window, by construction, where the bar indicates the average

$$\bar{R}_t^a = \bar{R}_t - \widehat{\alpha} - \widehat{\beta}\bar{R}_t^m = 0$$

• In event window

$$R_t^a = R_t - \widehat{\alpha} - \widehat{\beta} R_t^m$$

▶ Test whether $E R_t^a = 0$

Estimate abnormal return by CAPM

Another obvious possible model of normal returns is the CAPM

$$R_{t} - R_{t}^{f} = \alpha + \beta \left(R_{t}^{m} - R_{t}^{f} \right) + \varepsilon_{t}$$

- \blacktriangleright where R_t is observed return
- $ightharpoonup R_t^m$ is the market return and R_t^f is the riskfree rate
- \triangleright α and β are the parameters in the CAPM
 - ★ Estimate by ordinary least squares
- \triangleright ε_t is the "abnormal return"
 - \star Mean of ε_t is zero by construction in estimation period
- Estimate α and β in estimation period, giving $\widehat{\alpha}$ and $\widehat{\beta}$
- In estimation window, by construction

$$\bar{R}_t^a = \bar{R}_t - \bar{R}_t^f - \widehat{\alpha} - \widehat{\beta} \left(\bar{R}_t^m - \bar{R}_t^f \right) = 0$$

In event window

$$R_t^a = R_t - R_t^f - \widehat{\alpha} - \widehat{\beta} \left(R_t^m - R_t^f \right)$$

▶ Test whether $E R_t^a = 0$

Aggregation

- Can aggregate over time or across firms or both
- Aggregate over time to get "cumulative abnormal return"
 - Change occurs over time, possibly over days
- Aggregate across same event for multiple firms
 - Need not occur on the same day for each firm
- Aggregation leads to no fundamental issues if normal and abnormal returns uncorrelated

Example: Variance of cumulated or averaged returns

- Cumulate or average returns over time from T_1 to T_2 , $T^e = T_2 T_1 + 1$ observations
- ullet Cumulated returns from T_1 to T_2

$$\sum_{t=T_1}^{T_2} R_t^a$$

If returns are uncorrelated over time with a constant variance

$$\operatorname{Var}\left[\sum_{t=T_{1}}^{T_{2}}R_{t}^{a}\right] = \sum_{t=T_{1}}^{T_{2}}\operatorname{Var}\left[R_{t}^{a}\right] = T^{e}\operatorname{Var}\left[R^{a}\right]$$

$$\operatorname{SD}\left[\sum_{t=T_{1}}^{T_{2}}R_{t}^{a}\right] = \sqrt{T^{e}}\operatorname{SD}\left[R^{a}\right]$$

Example: Variance of cumulated or averaged returns

- If returns are uncorrelated over time with a constant variance
- The null hypothesis is that, in the event window,

$$ER_t^a=0$$

which implies

$$\mathsf{E}\sum_{t=T_1}^{T_2}R_t^a=0$$

Under this null hypothesis

$$rac{\sum\limits_{t=T_1}^{T_2}R_t^a}{\sqrt{T^e}\,{
m SD}\left[R^a
ight]}\sim t$$
 with T^e-p degrees of freedom

where p is the number of parameters estimated

Uses of event studies

- Is there insider trading before an announcement?
 - ▶ Stock price changes before an announcement
- Which firms gain and which lose from a regulation?
- Effects of short-sale restrictions on stock prices
- What are effects of events concerning firms' financing?
 - Stock splits
 - Loan financing

Possible problems

- When did the event become known?
- There may be other events affecting returns on the same days
- Event date may not be independent of developments concerning firm
 - ► For example, low stock returns may cause a stock buyback
- Heteroskedasticity
 - ► Changes in variance over time

Summary

- At their simplest, event studies use relatively simple statistics
- Maybe partly because of that, they can be quite informative
- Trickiest issue usually is deciding when to date events