Financial Econometrics Estimation and Inference

Gerald P. Dwyer

Trinity College, Dublin

January 2016

Outline

- About Me
- Pinancial Econometrics What will you learn?
 - What is financial econometrics?
 - Topics Covered
- Inference and Estimation
 - Minimum Variance Unbiased Estimation
 - Consistency
- Maximum Likelihood
- Bayesian Inference
- **6** Summary

Who am I?

- Professor and BB&T Scholar at Clemson University
- Federal Reserve Bank of Atlanta
- Research
- Brief summary
- jerry@jerrydwyer.com and http://www.jerrydwyer.com

What is Financial Econometrics?

- Financial econometrics is the use of econometric procedures to answer financial questions using financial data
- What sorts of questions?
- Statistical analysis to inform an economic analysis
 - What factors affect stock returns and how much do they do so?
 - ▶ Interest rates on Irish government debt have fallen substantially. Are they likely to go up or down?
 - ► How likely is it that a portfolio will lose 20 percent of its value in any given 12-month period?
 - ► Are stock prices mean reverting? Are stock returns mean reverting?
 - Is the value of the euro likely to go up or down? What does it depend on?
 - ► The Swiss franc has risen a lot in the last week and there are widespread losses. Who is losing and why did the have the trades on that they had?
- Mostly time series data

Topics covered

- Estimation
- Summarizing data and behavior of returns
- Event studies
- Univariate time series
- Multivariate time series (Vector autoregressions)
- Multivariate time series (Error correction mechanisms)
- Volatility
- Multivariate volatility
- Nonlinear time series analysis
- Value at risk

Topics covered and text

- Brooks, Chs. 1 and 2 Estimation and Summarizing data and behavior of returns
- Class slides and Campbell, Lo and MacKinley Ch. 4, Event studies
- Brooks, Ch. 5 Univariate time series
- Brooks, Ch. 6 Multivariate time series (Vector autoregressions)
- Brooks, Ch. 7 Multivariate time series (Error correction mechanisms)
- Brooks, Ch. 8 Volatility and Multivariate volatility
- Brooks, Ch. 9 Nonlinear time series analysis
- Riskmetrics Brochure Value at risk

Purpose of inference

- What are plausible and implausible values of estimates of a particular parameter?
 - Point estimate

Criteria for estimators

- Classical statistics
 - Minimum Variance Unbiased Estimators (MVUE)
 - ★ or Best Linear Unbiased Estimator (BLUE)
 - ★ or Ordinary Least Squares (OLS)
 - Maximum likelihood
 - ★ Conditional on the data, pick the most likely value

OLS

- Ordinary least squares with x fixed (nonstochastic)
- Suppose that x is not stochastic
 - x is deterministic, fixed in repeated samples
 - e.g. treatments of crops on plots
 - time trend
 - quarterly dummy variables

$$y_i = x_i \beta + \varepsilon_i, i = 1, ..., N$$

 $\mathsf{E} y_i = \mathsf{E} x_i = 0$
 $\mathsf{E} \varepsilon_i = 0, \; \mathsf{E} \varepsilon_i^2 = \sigma^2, \; \mathsf{E} \varepsilon_i \varepsilon_j = 0 \; \forall \; i \neq j$

OLS with nonstochastic regressors is unbiased

Properties of equation

$$y_i = x_i \beta + \varepsilon_i, i = 1, ..., N$$

 $\mathsf{E} \, y_i = \mathsf{E} \, x_i = 0$
 $\mathsf{E} \, \varepsilon_i = 0, \; \mathsf{E} \, \varepsilon_i^2 = \sigma^2, \; \mathsf{E} \, \varepsilon_i \varepsilon_j = 0 \; \forall \; i \neq j$

OLS with nonstochastic regressors is unbiased

Properties of equation

$$\begin{aligned} y_i &= x_i \beta + \varepsilon_i, \ i = 1, ..., N \\ & \exists \ y_i &= \exists \ x_i = 0 \\ & \exists \ \varepsilon_i &= 0, \ \exists \ \varepsilon_i^2 = \sigma^2, \ \exists \ \varepsilon_i \varepsilon_j = 0 \ \forall \ i \neq j \end{aligned}$$

ullet \widehat{eta} can be written

$$\widehat{\beta} = \frac{\sum xy}{\sum x^2}$$

$$= \frac{\sum xx\beta}{\sum x^2} + \frac{\sum x\varepsilon}{\sum x^2}$$

$$= \beta + \frac{\sum x\varepsilon}{\sum x^2}$$

OLS with nonstochastic regressors is unbiased

ullet And the expected value of \widehat{eta} is

$$E \hat{\beta} = E \beta + E \frac{\sum x \varepsilon}{\sum x^2}$$
$$= \beta + \frac{\sum x E \varepsilon}{\sum x^2}$$
$$= \beta$$

Why x nonstochastic?

- \bullet Consider the term $\mathsf{E}\,\frac{\sum x \varepsilon}{\sum x^2}$ in $\mathsf{E}\,\widehat{\beta} = \beta + \mathsf{E}\,\frac{\sum x \varepsilon}{\sum x^2}$
- If x is not random, then

$$\mathsf{E}\,\frac{\sum x\varepsilon}{\sum x^2} = \frac{\sum x\,\mathsf{E}\,\varepsilon}{\sum x^2}$$

If x is random, then in general

$$\mathsf{E}\,\frac{\sum x\varepsilon}{\sum x^2} \neq \frac{\mathsf{E}\,\sum x\varepsilon}{\mathsf{E}\,\sum x^2}$$

Why unbiased if *x* nonstochastic?

- Expectations operator is a linear operator
- If a is a constant, then

$$Eax = aEx$$

• If $\frac{x}{\sum x^2}$ is a constant, then

$$\mathsf{E} \frac{x\varepsilon}{\sum x^2} = \frac{x}{\sum x^2} \, \mathsf{E} \, \varepsilon$$

• In general,

$$\mathsf{E} \frac{x\varepsilon}{\sum x^2} \neq \frac{\mathsf{E}(x\varepsilon)}{\mathsf{E}\sum x^2} \text{ and } \mathsf{E} \frac{x\varepsilon}{\sum x^2} \neq \mathsf{E} \left[\frac{x}{\sum x^2}\right] \mathsf{E} \varepsilon$$

Right-hand side variable (x) stochastic and least squares works

ullet The case with x stochastic in which least squares works: x and ε are independent

$$\begin{split} &\mathsf{E}\,\frac{x\varepsilon}{\sum x^2} = \mathsf{E}\,[f\,(x)\,\varepsilon] \;\; \text{with} \; f\,(x) = \frac{x}{\sum x^2} \\ &\mathsf{E}\,[f\,(x)\,\varepsilon] = \mathsf{E}\,f\,(x)\,\mathsf{E}\,\varepsilon \;\text{if} \; x \;\text{and} \; \varepsilon \;\text{are independent} \\ &\mathsf{E}\,f\,(x)\,\mathsf{E}\,\varepsilon = 0 \;\text{because} \;\; \mathsf{E}\,\varepsilon = 0 \end{split}$$

- If x and ε are normally distributed and uncorrelated, then least squares is unbiased
 - Sufficient but not necessary

OLS is MVUE and BLUE

- MVUE: Var $\left[\widehat{\beta}\right]$ around true value is a minimum among estimators that are unbiased
- BLUE: $\hat{\beta}$ is a linear function of the y_i , is unbiased and has minimum variance among unbiased estimators
 - Estimator is a linear function of the y_i because

$$\widehat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2} = \sum w_i y_i, \quad w_i = \frac{x_i}{\sum x_i^2}$$

Unbiasedness in a time series setting

- Unbiasedness will hardly come up in this class
- Why?
- Time series regression with dependence on past values

▶
$$y_t = \beta y_{t-1} + \varepsilon_t$$
, $t = 1, ..., T$

- ★ Assume that y_{t-1} and ε_t are independent
- ★ Correlation of y_{t-1} and ε_t is zero
- ★ Implies that $E y_{t-1} \varepsilon_t = 0$
- An ordered sequence of observations from 1 to T
- This is called a first-order autoregression
 - **▶** *y*₀
 - \ \ \
 - $y_1 \leftarrow \varepsilon_1$

Unbiasedness in a time series setting

- Unbiasedness will hardly come up in this class
- Why?
- Time series regression with dependence on past values

▶
$$y_t = \beta y_{t-1} + \varepsilon_t$$
, $t = 1, ..., T$

- ★ Assume that y_{t-1} and ε_t are independent
- ★ Correlation of y_{t-1} and ε_t is zero
- ★ Implies that $E y_{t-1} \varepsilon_t = 0$
- An ordered sequence of observations from 1 to T
- This is called a first-order autoregression
 - **▶** *y*₀
 - **▶** ↓
 - \triangleright $y_1 \leftarrow \varepsilon_1$
 - **▶** ↓
 - ▶ $y_2 \leftarrow \varepsilon_2$
 - **>**

OLS an unbiased estimator?

Ordinary Least Squares (OLS) estimator for an autoregression?

$$\begin{split} \widehat{\beta} &= \frac{\sum y_{t}y_{t-1}}{\sum y_{t-1}^{2}} \\ &= \frac{\sum \beta y_{t-1}y_{t-1}}{\sum y_{t-1}^{2}} + \frac{\sum \varepsilon_{t}y_{t-1}}{\sum y_{t-1}^{2}} \\ &= \beta + \frac{\sum \varepsilon_{t}y_{t-1}}{\sum y_{t-1}^{2}} \end{split}$$

- y_{t-1} not fixed in repeated samples
 - ▶ Can't have different ε_t and same set of y's $\forall t = 1, ..., T$
 - For example, a different ε_2 implies a different y_2 and a different y_2 implies a different y_3 , and so on
- So y_{t-1} must be stochastic

OLS an unbiased estimator?

ullet Just because y_{t-1} is stochastic doesn't mean that OLS is not unbiased

$$\widehat{\beta} = \beta + \frac{\sum \varepsilon_t y_{t-1}}{\sum y_{t-1}^2}$$

- ullet Seems like y_{t-1} and $arepsilon_t$ are independent and they are
 - ▶ By assumption, ε_t is independent of y_{t-1}
- But y_t depends on ε_t , and so does y_{t+1} , y_{t+2} , etc.

$$\begin{split} \mathsf{E}\,\widehat{\beta} = & \beta + \mathsf{E}\,\frac{\sum \varepsilon_t y_{t-1}}{\sum y_{t-1}^2} \\ = & \beta + \sum \mathsf{E}\left[\left(\frac{y_{t-1}}{\sum y_{t-1}^2}\right)\varepsilon_t\right] \end{split}$$

• ε_t and $\sum_{t=1}^T y_{t-1}^2$ cannot be independent and $\widehat{\beta}$ is not an unbiased estimator in general

Digression: Least squares and error term

- One way to see why $E \sum x \varepsilon = 0$ is required for unbiasedness:
- What is the correlation of the error term and right-hand-side variables in a computed regression? The covariance of x and the computed error term is identically zero (for any correct program)

Unbiasedness in a time series context

- In general, estimators are not unbiased in a time series context because they're part of a sequence
- Will focus on consistency

Bottom line on asymptotics and time series

- Consistency is more pertinent than unbiasedness
- The limiting distribution provides a way to estimate the variability of the estimator
 - ▶ Some algebra can show that the mean \overline{y}_T of a normally distributed variable has the asymptotic distribution N $(\mu, \sigma^2/T)$
 - ► This is the same as the finite-sample distribution in this case, but the asymptotic distribution often is easier to find

Simple problem of estimating the mean of a normally distributed variable

- In general, estimators are not unbiased in a time series context because they're part of a sequence but they can be unbiased if dependence over time is unimportant
- Suppose y is normally distributed

$$y \sim \mathrm{N}\left(\mu,\sigma^2\right)$$
 or can be written $y \sim \mathrm{NIND}\left(\mu,\sigma^2\right)$

By definition

$$\overline{y}_T = \frac{\sum y_t}{T}$$
 and $s_T^2 = \frac{\sum (y_t - \overline{y})^2}{T - 1}$

It's shown in basic statistics that

$$E \overline{y}_{\tau} = u$$
 and $E s_{\tau}^2 = \sigma^2$

Also

$$\operatorname{Var}\left[\overline{y}_{T}\right] = \frac{\operatorname{Var}\left[\sum y_{t}\right]}{T^{2}} = T^{-2} \sum \operatorname{Var}\left[y_{t}\right]$$

$$= \frac{\sum \sigma^{2}}{T^{2}} = \frac{T\sigma^{2}}{T^{2}} = \frac{\sigma^{2}}{T^{2}}$$

Definition of convergence in probability

- Let θ_T be an estimator with sample size T and θ a parameter with some particular value
- Definition: θ_T converges in probability to a constant θ if $\lim_{T\to\infty}\Pr\left(|\theta_T-\theta|>\epsilon\right)=0\ \forall\ \epsilon>0$
 - ightharpoonup ϵ is "some constant value", not an error term
- Write $plim \theta_T = \theta$

Example of consistent estimator

• Suppose that $\theta=0$ and θ_T is an estimator that takes on the values 0 and T

$$\Pr\left(heta_{T}=0
ight)=1-rac{1}{T} ext{ and } \Pr\left(heta_{T}=T
ight)=rac{1}{T}$$

Therefore

$$\lim_{T \to \infty} \Pr(\theta_T = T) = 0$$

$$\lim_{T \to \infty} \Pr(\theta_T = 0) = 1$$

• Because $\theta = 0$,

$$\lim_{T \to \infty} \Pr\left(\left| \theta_T - \theta \right| > \epsilon \right) = 0 \,\, \forall \,\, \epsilon > 0$$

and

$$\lim_{T o \infty} \Pr\left(\left| heta_T - heta
ight| < \epsilon
ight) = 1 \; orall \; \epsilon > 0$$

and therefore

$$plim \theta_T = \theta$$

• If θ equalled something other than zero, then θ_T is an inconsistent estimator of θ

Properties of probability limits

- ullet Suppose have estimates a_T of a parameter lpha and b_T of a parameter eta
- Suppose that plim $a_T = \alpha$ and plim $b_T = \beta$
- Then

$$\begin{aligned} & \operatorname{plim}\left(a_T + b_T\right) = \operatorname{plim} a_T + \operatorname{plim} b_T = \alpha + \beta \\ & \operatorname{plim}\left(a_T b_T\right) = \operatorname{plim} a_T \operatorname{plim} b_T = \alpha \beta \\ & \operatorname{plim}\left(a_T / b_T\right) = \operatorname{plim} a_T / \operatorname{plim} b_T = \alpha / \beta \text{ if } \beta \neq 0 \end{aligned}$$

 This can be contrasted with the expectation operator for which, in general,

$$E_{aT}b_T \neq \alpha\beta$$

 $E_{aT}/b_T \neq \alpha/\beta$

Convergence in distribution

- Want nondegenerate distribution of estimator
 - ▶ If an estimator θ_T is a consistent estimator of θ , then estimator converges to a constant
 - We want some measure of the variability of the estimator
 - ► This is where the asymptotic distribution comes in
- The asymptotic distribution of an estimator is a distribution that is used to approximate the finite-sample distribution of the estimator
- Some function of the estimator converges to a distribution, the asymptotic distribution

Limiting Distribution

- Definition: If θ_T converges in distribution to the random variable θ , where F (θ) is the cumulative distribution function of θ , then F (θ) is the **limiting distribution** of θ_T
- Often written

$$\theta_T \to^d \mathsf{F}(\theta)$$

• If F (θ) is a common form such as N $(\mu, \sigma^2/T)$, this is often written as

$$\theta_T \to^d N(\mu, \sigma^2/T)$$

• Proved by showing, for example, that $\sqrt{T}\theta_T$ converges to N (μ,σ^2)

Bottom line on asymptotics and time series

- Consistency is more pertinent than unbiasedness
- The limiting distribution provides a way to estimate the variability of the estimator
 - ▶ Some algebra can show that the mean \overline{y}_T of a normally distributed variable has the asymptotic distribution N $(\mu, \sigma^2/T)$
 - ► This is the same as the finite-sample distribution in this case, but the asymptotic distribution often is easier to find

Maximum likelihood estimation is commonly invoked to justify an estimator

- Maximum likelihood often is a convenient way to obtain a consistent estimator
- Maximum likelihood uses the distribution of the observations
- Maximum likelihood obtains point estimates of the parameters as the ones most likely to have generated the observations
- Maximum likelihood provides a relatively straightforward way of estimating the variance of parameters

Maximum likelihood estimation of the parameters of a normal distribution

- Have a sample of T observations, $y_1, y_2, ..., y_T$
- \bullet Suppose they are generated independently from a normal distribution with mean μ and variance σ^2
- Each observation has the distribution

$$\frac{1}{\sigma (2\pi)^{1/2}} \exp \left[-\frac{1}{2\sigma^2} (y_t - \mu)^2 \right]$$

• The joint sample of T observations has the distribution

$$f\left(y_{t}|\mu,\sigma^{2}\right) = \frac{1}{\sigma^{T}\left(2\pi\right)^{T/2}}\exp\left[-\frac{1}{2\sigma^{2}}\sum_{t=1}^{T}\left(y_{t}-\mu\right)^{2}\right]$$

• The likelihood function of these data and parameters is

$$L\left(\mu, \sigma^{2} | y_{t},\right) = \frac{1}{\sigma^{T}\left(2\pi\right)^{T/2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{t=1}^{T} \left(y_{t} - \mu\right)^{2}\right]$$

The log of the likelihood function

• The likelihood function of the parameters for a normal distribution is

$$L\left(\mu, \sigma^{2} | y_{t}, \right) = \frac{1}{\sigma^{T} \left(2\pi\right)^{T/2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{t=1}^{T} \left(y_{t} - \mu\right)^{2}\right]$$

 The log of the likelihood often is more convenient for exponential distributions such as the normal distribution

$$\ln L(\mu, \sigma^{2}|y_{t},) = -\frac{T}{2}2\pi - T \ln \sigma - \frac{1}{2\sigma^{2}} \sum_{t=1}^{T} (y_{t} - \mu)^{2}$$

Maximum likelihood estimation of mean and variance

• The log of the likelihood function

$$\ln L(\mu, \sigma^{2}|y_{t},) = -\frac{T}{2} \ln 2\pi - T \ln \sigma - \frac{1}{2\sigma^{2}} \sum_{t=1}^{T} (y_{t} - \mu)^{2}$$

- Maximize likelihood as a function of parameters conditional on the data
 - Can do all at once or sequentially
- \bullet Want to estimate μ
- Denote the estimator by a "hat" over it
- Maximize by solving

$$\frac{\partial \ln L}{\partial \mu} = \frac{1}{\sigma^2} \sum_{t=1}^{T} (y_t - \widehat{\mu}) = 0$$

Maximum likelihood estimation of mean and variance

Maximize by solving

$$\begin{split} \frac{\partial \ln \mathbf{L}}{\partial \mu} &= \frac{1}{\sigma^2} \sum_{t=1}^T \left(y_t - \widehat{\mu} \right) = 0 \\ \sum_{t=1}^T \left(y_t - \widehat{\mu} \right) &= 0 \\ \sum_{t=1}^T y_t &= T \widehat{\mu} \\ \widehat{\mu} &= \frac{\sum_{t=1}^T y_t}{T} = \overline{y} \end{split}$$

Illustration

Likelihood function

Figure: Likelihood function of normally distributed data with mean \overline{y} of 2 and variance $s_{ml}^2 = \sum (y - \overline{y})^2 / T$ of 1. The maximum likelihood estimator is the mean of the normal distribution.

Finish by finding estimator of variance

- Estimator of σ^2
- ullet Concentrate μ out of likelihood function by replacing it by \overline{y}

$$\ln L (\sigma^{2}|y_{t}) = -\frac{T}{2} \ln 2\pi - T \ln \sigma - \frac{1}{2\sigma^{2}} \sum_{t=1}^{I} (y_{t} - \widehat{\mu})^{2}$$
$$= -\frac{T}{2} \ln 2\pi - \frac{T}{2} \ln \sigma^{2} - \frac{1}{2\sigma^{2}} \sum_{t=1}^{T} (y_{t} - \overline{y})^{2}$$

ullet Maximize the concentrated likelihood function with respect to σ^2

Finish by finding estimator of variance

ullet Maximize likelihood function with respect to σ^2

$$\ln \mathsf{L}\left(\sigma^2|y_t\right) = -\frac{T}{2}\ln 2\pi - \frac{T}{2}\ln \sigma^2 - \frac{1}{2\sigma^2}\sum_{t=1}^{T}\left(y_t - \overline{y}\right)^2$$

Solve

$$\begin{split} \frac{\partial \ln \mathbf{L}}{\partial \sigma^2} &= -\frac{T}{2} \frac{1}{\widehat{\sigma}^2} + \frac{1}{2} \frac{1}{\widehat{\sigma}^4} \sum_{t=1}^T (y_t - \overline{y})^2 = 0 \\ &- T + \frac{1}{\widehat{\sigma}^2} \sum_{t=1}^T (y_t - \overline{y})^2 = 0 \\ \widehat{\sigma}^2 &= \frac{\sum_{t=1}^T (y_t - \overline{y})^2}{T} \end{split}$$

Consistency and unbiasedness

•
$$\widehat{\mu}=\overline{y}$$
 and $\widehat{\sigma}^2=\frac{\displaystyle\sum_{t=1}^T(y_t-\overline{y})^2}{T}$ are consistent estimators of μ and σ^2

Not necessarily unbiased

$$\widehat{\sigma}^2 = \frac{\sum\limits_{t=1}^T (y_t - \overline{y})^2}{T} \text{ is a biased estimator of } \sigma^2$$

★ Not very important with enough observations

Properties of maximum likelihood estimators commonly mentioned

- Maximum likelihood provides a couple of natural estimators of the variance of the estimator
- \bullet Let θ be a parameter we have estimated

$$\operatorname{Var}\left[\widehat{\theta}\right] \geq \left(\operatorname{E}\left[\left(\partial \operatorname{In}\operatorname{L}\left(\theta|y\right)/\partial \theta\right)\right]^{2}\right)^{-1}$$

where the expectation with respect to the distribution of y's is evaluated at the true parameter

• Under regularity conditions

$$\mathsf{E}\left[\left(\partial \mathsf{\ln} \mathsf{L}\left(\theta | y\right) / \partial \theta\right)\right]^{2} = -\mathsf{E}\left[\frac{\partial^{2} \mathsf{\ln} \mathsf{L}\left(\theta | y\right)}{\partial \theta^{2}}\right]$$

• The term information matrix denotes

$$I = - \operatorname{E} \left[\frac{\partial^2 \ln \operatorname{L} (\theta|y)}{\partial \theta^2} \right]$$

• Therefore, under regularity conditions,

$$\operatorname{Var}\left[\widehat{\theta}\right] = I^{-1} \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow \longleftrightarrow$$

Typical properties of maximum likelihood estimators

- Let $\widehat{\theta}_{ML}$ be the maximum likelihood of some estimator
 - Suppose that the likelihood function has a single peak and a unique maximum
- Fairly general properties
 - $\blacktriangleright \ \operatorname{plim} \widehat{\theta}_{\mathit{ML}} = \theta$

 - Asymptotic variance of $\widehat{ heta}_{ML}$ is AVar $\left(\widehat{ heta}_{ML}
 ight) = I^{-1}$
 - Asymptotic standard deviation of $\widehat{\theta}_{ML}$ is ASD $\left(\widehat{\theta}_{ML}\right)$
 - t-ratio is $\frac{\widehat{\theta}_{ML} \theta}{\mathsf{ASD}(\widehat{\theta}_{ML})} \sim \mathsf{N}\left(0,1\right)$
 - Can do more complicated tests by likelihood ratio test
 - ▶ $-2 \ln \left(\frac{\text{max Likelihood Restricted}}{\text{max Likelihood Unrestricted}} \right) \sim \chi^2 \left(\text{degrees of freedom} = \text{number of restrictions} \right)$

Bayes rule

- Foundation is Bayes rule
- Combine likelihood function of parameters with prior information to get posterior distribution and conclusions
 - Prior before the data
 - Posterior after the data

Bayes rule is simple

- The application is the big jump
- Start from definition of conditional probability

$$\operatorname{pr}(A,B) = \operatorname{pr}(A|B)\operatorname{pr}(B)$$

- ▶ where pr (A, B) is the joint probability of two events A and B
- $ightharpoonup \operatorname{pr}(A|B)$ is the probability of the event A conditional on the event B
- pr (B) is the probability of B
- This equation defines conditional probability

$$\operatorname{pr}(A|B) = \operatorname{pr}(A,B) / \operatorname{pr}(B) \text{ if } \operatorname{pr}(B) \neq 0$$

Also can say

$$pr(A, B) = pr(B|A) pr(A)$$

Equate two definitions and get

$$\operatorname{pr}(B|A) = \frac{\operatorname{pr}(A|B)\operatorname{pr}(B)}{\operatorname{pr}(A)}$$

Bayesian interpretation

$$\operatorname{pr}(B|A) = \frac{\operatorname{pr}(A|B)\operatorname{pr}(B)}{\operatorname{pr}(A)}$$

- Want to draw an inference about probability of observing event B
 - Observe some discrete event A
 - ightharpoonup pr (B|A) is the probability of B conditional on observing A
 - pr (B) is prior probability that B is true
 - ightharpoonup pr (A|B) is probability of observing A if B is true
 - ightharpoonup pr (A) is the probability of observing A whether B is true or not
 - ▶ Note that pr (A) is the unconditional probability of observing A

★
$$\operatorname{pr}(A) = \operatorname{pr}(A|B)\operatorname{pr}(B) + \operatorname{pr}(A|\operatorname{not} B)\operatorname{pr}(\operatorname{not} B)$$

$$\operatorname{pr}(B|A) = \frac{\operatorname{pr}(A|B)\operatorname{pr}(B)}{\operatorname{pr}(A|B)\operatorname{pr}(B) + \operatorname{pr}(A|\operatorname{not}B)\operatorname{pr}(\operatorname{not}B)}$$

Example of Bayesian analysis

$$\operatorname{pr}(B|A) = \frac{\operatorname{pr}(A|B)\operatorname{pr}(B)}{\operatorname{pr}(A|B)\operatorname{pr}(B) + \operatorname{pr}(A|\operatorname{not}B)\operatorname{pr}(\operatorname{not}B)}$$

- Example: B is the result that have illness, say flu
 - ► A is some evaluation
 - ▶ Have a prior probability of having flu, pr (B), say 50 percent
 - ► How informative is it if you go to doctor's office and he says you have the flu?
 - Suppose doctor says you have the flu
 - ★ 80 percent of time when you do pr (A|B)
 - ★ 20 percent when you don't pr (A|not B)
 - If the doctor says you have the flu, then the probability of your having the flu is

$$\frac{.8 \cdot .5}{.8 \cdot .5 + .2 \cdot .5} = \frac{.40}{.50} = .80$$

A lot of information in the doctor's evaluation

Second example of Bayesian analysis

$$\operatorname{pr}(B|A) = \frac{\operatorname{pr}(A|B)\operatorname{pr}(B)}{\operatorname{pr}(A|B)\operatorname{pr}(B) + \operatorname{pr}(A|\operatorname{not}B)\operatorname{pr}(\operatorname{not}B)}$$

- Have a prior probability of having flu, pr (B), say 50 percent
- Go to doctor's office and he says you have the flu
- Suppose that he says you have the flu
 - ▶ 60 percent of time when you do pr (A|B)
 - ▶ 40 percent when you don't pr (A|not B)
- Then the probability of your having the flu given the doctor says you
 do is

$$\frac{.6 \cdot .5}{.6 \cdot .5 + .4 \cdot .5} = \frac{.30}{.50} = .60$$

• If pr(A|B) and pr(A|not B) are both 0.5, then pr(B|A) = .5, the prior probability

Diffuse prior

- First example
 - prior probability of flu is .5
 - probability that doctor will say you have the flu is .8 if you do
 - posterior probability is .8
- Second example
 - prior probability of flu is .5
 - probability that doctor will say you have the flu is .6 if you do
 - posterior probability is .6
- You had a diffuse prior equal probabilities of flu or not and you learned what can be learned from doctor

Third example of Bayesian analysis

$$\operatorname{pr}\left(B|A\right) = \frac{\operatorname{pr}\left(A|B\right)\operatorname{pr}\left(B\right)}{\operatorname{pr}\left(A|B\right)\operatorname{pr}\left(B\right) + \operatorname{pr}\left(A|\operatorname{not}\,B\right)\operatorname{pr}\left(\operatorname{not}\,B\right)}$$

- Have a prior probability of having flu, pr(B), say 80 percent
- Go to doctor's office and he says you have the flu
- Suppose that he says you have the flu
 - ▶ 80 percent of time when you do pr (A|B)
 - ▶ 20 percent when you don't pr (A|not B)
- Then the probability of your having the flu given the doctor says you do is

$$\frac{.8 \cdot .8}{.8 \cdot .8 + .2 \cdot .2} = \frac{.64}{.68} = .94$$

Analysis in econometric context

- $\operatorname{pr}(B|A) = \frac{\operatorname{pr}(A|B)\operatorname{pr}(B)}{\operatorname{pr}(A)}$
- Can write this in terms of discrete or continuous probability distribution functions
 - ▶ Let *B* be a parameter β and pr $(B) \equiv p(\beta)$
 - ★ Might be CAPM parameter
 - \triangleright Prior probability distribution of plausible values of β for some firm
 - Let A be some data we observe and pr $(A|B) = p(y|\beta)$, the probability of the data given β

Bayesian analysis of parameter values

 $p(\beta|y) = \frac{\mathsf{L}(\beta|y) p(\beta)}{p(y)}$

where $p(\beta|y)$ is the posterior probability distribution of values of β conditional on the data

• p(y) is a normalizing constant independent of β so this can be analyzed using

$$p(\beta|y) \propto L(\beta|y) p(\beta)$$

where \propto means "proportional to"

- Purpose is to make inferences about the posterior distribution of parameter values
 - ▶ Very flexible
 - Coherent
 - Can be computationally demanding but computer time is cheap

Comparison of classical and Bayesian analysis

- ullet Classical: Probability distribution of estimator \widehat{eta}
 - ▶ True value is a number, zero in this case if the estimator is unbiased

Comparison of classical and Bayesian analysis

- ullet Bayesian: Posterior probability distribution of various possible values of eta
 - ► True value is one of these possible values, with some more probable than others

Interpretration of Estimate of Variability

• Estimate of five percent confidence interval for a normal distribution

Summary

- Estimation issues
 - Unbiased
 - Estimate of variability
 - Consistency
 - Maximium likelihood estimator
- Bayesian statistics
 - Plausibility of posterior value after seeing data
 - Natural interpretation of variability