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Who am I?

Professor and BB&T Scholar at Clemson University

Federal Reserve Bank of Atlanta

Research

Brief summary

jerry@jerrydwyer.com and http://www.jerrydwyer.com



What is Financial Econometrics?

Financial econometrics is the use of econometric procedures to answer
financial questions using financial data

What sorts of questions?

Statistical analysis to inform an economic analysis

I What factors affect stock returns and how much do they do so?
I Interest rates on Irish government debt have fallen substantially. Are

they likely to go up or down?
I How likely is it that a portfolio will lose 20 percent of its value in any

given 12-month period?
I Are stock prices mean reverting? Are stock returns mean reverting?
I Is the value of the euro likely to go up or down? What does it depend

on?
I The Swiss franc has risen a lot in the last week and there are

widespread losses. Who is losing and why did the have the trades on
that they had?

Mostly time series data



Topics covered

Estimation

Summarizing data and behavior of returns

Event studies

Univariate time series

Multivariate time series (Vector autoregressions)

Multivariate time series (Error correction mechanisms)

Volatility

Multivariate volatility

Nonlinear time series analysis

Value at risk



Topics covered and text

Brooks, Chs. 1 and 2 - Estimation and Summarizing data and
behavior of returns

Class slides and Campbell, Lo and MacKinley Ch. 4, Event studies

Brooks, Ch. 5 - Univariate time series

Brooks, Ch. 6 - Multivariate time series (Vector autoregressions)

Brooks, Ch. 7 - Multivariate time series (Error correction
mechanisms)

Brooks, Ch. 8 - Volatility and Multivariate volatility

Brooks, Ch. 9 - Nonlinear time series analysis

Riskmetrics Brochure - Value at risk



Purpose of inference

What are plausible and implausible values of estimates of a particular
parameter?

I Point estimate



Criteria for estimators

Classical statistics

I Minimum Variance Unbiased Estimators (MVUE)

F or Best Linear Unbiased Estimator (BLUE)
F or Ordinary Least Squares (OLS)

I Maximum likelihood

F Conditional on the data, pick the most likely value



OLS

Ordinary least squares with x fixed (nonstochastic)

Suppose that x is not stochastic
I x is deterministic, fixed in repeated samples
I e.g. treatments of crops on plots
I time trend
I quarterly dummy variables

yi = xi β + ε i , i = 1, ...,N

E yi = E xi = 0

E ε i = 0, E ε2i = σ2, E ε i εj = 0 ∀ i 6= j



OLS with nonstochastic regressors is unbiased

Properties of equation

yi = xi β + ε i , i = 1, ...,N

E yi = E xi = 0

E ε i = 0, E ε2i = σ2, E ε i εj = 0 ∀ i 6= j

β̂ can be written

β̂ =
∑ xy

∑ x2

=
∑ xxβ

∑ x2
+

∑ xε

∑ x2

=β +
∑ xε

∑ x2
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OLS with nonstochastic regressors is unbiased

And the expected value of β̂ is

E β̂ =E β + E
∑ xε

∑ x2

=β +
∑ x E ε

∑ x2

=β



Why x nonstochastic?

Consider the term E ∑ xε
∑ x2

in E β̂ = β + E ∑ xε
∑ x2

If x is not random, then

E
∑ xε

∑ x2
=

∑ x E ε

∑ x2

If x is random, then in general

E
∑ xε

∑ x2
6= E ∑ xε

E ∑ x2



Why unbiased if x nonstochastic?

Expectations operator is a linear operator

If a is a constant, then
E ax = aE x

If x
∑ x2

is a constant, then

E
xε

∑ x2
=

x

∑ x2
E ε

In general,

E
xε

∑ x2
6= E (xε)

E ∑ x2
and E

xε

∑ x2
6= E

[
x

∑ x2

]
E ε



Right-hand side variable (x) stochastic and least squares
works

The case with x stochastic in which least squares works: x and ε are
independent

E
xε

∑ x2
= E [f (x) ε] with f (x) =

x

∑ x2

E [f (x) ε] = E f (x)E ε if x and ε are independent

E f (x)E ε = 0 because E ε = 0

If x and ε are normally distributed and uncorrelated, then least
squares is unbiased

I Sufficient but not necessary



OLS is MVUE and BLUE

MVUE: Var
[

β̂
]

around true value is a minimum among estimators

that are unbiased

BLUE: β̂ is a linear function of the yi , is unbiased and has minimum
variance among unbiased estimators

I Estimator is a linear function of the yi because

β̂ =
∑ xiyi

∑ x2i
= ∑wiyi , wi =

xi

∑ x2i



Unbiasedness in a time series setting

Unbiasedness will hardly come up in this class

Why?

Time series regression with dependence on past values
I yt = βyt−1 + εt , t = 1, ...,T

F Assume that yt−1 and εt are independent
F Correlation of yt−1 and εt is zero
F Implies that E yt−1εt = 0

An ordered sequence of observations from 1 to T

This is called a first-order autoregression
I y0
I ↓
I y1 ← ε1

I ↓
I y2 ← ε2
I ...
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OLS an unbiased estimator?

Ordinary Least Squares (OLS) estimator for an autoregression?

β̂ =
∑ ytyt−1

∑ y2t−1

=
∑ βyt−1yt−1

∑ y2t−1
+

∑ εtyt−1

∑ y2t−1

=β +
∑ εtyt−1

∑ y2t−1

yt−1 not fixed in repeated samples
I Can’t have different εt and same set of y ’s ∀ t = 1, ...,T
I For example, a different ε2 implies a different y2 and a different y2

implies a different y3, and so on

So yt−1 must be stochastic



OLS an unbiased estimator?

Just because yt−1 is stochastic doesn’t mean that OLS is not unbiased

β̂ = β +
∑ εtyt−1

∑ y2t−1

Seems like yt−1 and εt are independent and they are
I By assumption, εt is independent of yt−1

But yt depends on εt , and so does yt+1, yt+2, etc.

E β̂ =β + E
∑ εtyt−1

∑ y2t−1

=β + ∑ E

[(
yt−1

∑ y2t−1

)
εt

]
εt and ∑T

t=1 y
2
t−1 cannot be independent and β̂ is not an unbiased

estimator in general



Digression: Least squares and error term

One way to see why E ∑ xε = 0 is required for unbiasedness:

What is the correlation of the error term and right-hand-side variables
in a computed regression? The covariance of x and the computed
error term is identically zero (for any correct program)



Unbiasedness in a time series context

In general, estimators are not unbiased in a time series context
because they’re part of a sequence

Will focus on consistency



Bottom line on asymptotics and time series

Consistency is more pertinent than unbiasedness

The limiting distribution provides a way to estimate the variability of
the estimator

I Some algebra can show that the mean yT of a normally distributed
variable has the asymptotic distribution N

(
µ, σ2/T

)
I This is the same as the finite-sample distribution in this case, but the

asymptotic distribution often is easier to find



Simple problem of estimating the mean of a normally
distributed variable

In general, estimators are not unbiased in a time series context
because they’re part of a sequence but they can be unbiased if
dependence over time is unimportant
Suppose y is normally distributed

y ∼ N
(
µ, σ2

)
or can be written y ∼ NIND

(
µ, σ2

)
By definition

yT =
∑ yt
T

and s2T =
∑ (yt − y)2

T − 1
It’s shown in basic statistics that

E yT = µ and E s2T = σ2

Also

Var [yT ] =
Var [∑ yt ]

T 2
= T−2 ∑ Var [yt ]

=
∑ σ2

T 2
=

Tσ2

T 2
=

σ2

T



Definition of convergence in probability

Let θT be an estimator with sample size T and θ a parameter with
some particular value

Definition: θT converges in probability to a constant θ if
limT→∞ Pr (|θT − θ| > ε) = 0 ∀ ε > 0

I ε is “some constant value”, not an error term

Write plim θT = θ



Example of consistent estimator
Suppose that θ = 0 and θT is an estimator that takes on the values 0
and T

Pr (θT = 0) = 1− 1

T
and Pr (θT = T ) =

1

T
Therefore

lim
T→∞

Pr (θT = T ) = 0

lim
T→∞

Pr (θT = 0) = 1

Because θ = 0,

lim
T→∞

Pr (|θT − θ| > ε) = 0 ∀ ε > 0

and
lim

T→∞
Pr (|θT − θ| < ε) = 1 ∀ ε > 0

and therefore
plim θT = θ

If θ equalled something other than zero, then θT is an inconsistent
estimator of θ



Properties of probability limits

Suppose have estimates aT of a parameter α and bT of a parameter β

Suppose that plim aT = α and plim bT = β

Then

plim (aT + bT ) = plim aT + plim bT = α + β

plim (aTbT ) = plim aT plim bT = αβ

plim (aT /bT ) = plim aT / plim bT = α/β if β 6= 0

This can be contrasted with the expectation operator for which, in
general,

E aTbT 6= αβ

E aT /bT 6= α/β



Convergence in distribution

Want nondegenerate distribution of estimator

I If an estimator θT is a consistent estimator of θ, then estimator
converges to a constant

I We want some measure of the variability of the estimator
I This is where the asymptotic distribution comes in

The asymptotic distribution of an estimator is a distribution that is
used to approximate the finite-sample distribution of the estimator

Some function of the estimator converges to a distribution, the
asymptotic distribution



Limiting Distribution

Definition: If θT converges in distribution to the random variable θ,
where F (θ) is the cumulative distribution function of θ, then F (θ) is
the limiting distribution of θT

Often written
θT →d F (θ)

If F (θ) is a common form such as N
(
µ, σ2/T

)
, this is often written

as
θT →d N

(
µ, σ2/T

)
I Proved by showing, for example, that

√
T θT converges to N

(
µ, σ2

)



Bottom line on asymptotics and time series

Consistency is more pertinent than unbiasedness

The limiting distribution provides a way to estimate the variability of
the estimator

I Some algebra can show that the mean yT of a normally distributed
variable has the asymptotic distribution N

(
µ, σ2/T

)
I This is the same as the finite-sample distribution in this case, but the

asymptotic distribution often is easier to find



Maximum likelihood estimation is commonly invoked to
justify an estimator

Maximum likelihood often is a convenient way to obtain a consistent
estimator

Maximum likelihood uses the distribution of the observations

Maximum likelihood obtains point estimates of the parameters as the
ones most likely to have generated the observations

Maximum likelihood provides a relatively straightforward way of
estimating the variance of parameters



Maximum likelihood estimation of the parameters of a
normal distribution

Have a sample of T observations, y1, y2, ..., yT
Suppose they are generated independently from a normal distribution
with mean µ and variance σ2

Each observation has the distribution

1

σ (2π)1/2 exp

[
− 1

2σ2
(yt − µ)2

]
The joint sample of T observations has the distribution

f
(
yt |µ, σ2

)
=

1

σT (2π)T/2 exp

[
− 1

2σ2

T

∑
t=1

(yt − µ)2
]

The likelihood function of these data and parameters is

L
(
µ, σ2|yt ,

)
=

1

σT (2π)T/2 exp

[
− 1

2σ2

T

∑
t=1

(yt − µ)2
]



The log of the likelihood function

The likelihood function of the parameters for a normal distribution is

L
(
µ, σ2|yt ,

)
=

1

σT (2π)T/2 exp

[
− 1

2σ2

T

∑
t=1

(yt − µ)2
]

The log of the likelihood often is more convenient for exponential
distributions such as the normal distribution

ln L
(
µ, σ2|yt ,

)
= −T

2
2π − T ln σ− 1

2σ2

T

∑
t=1

(yt − µ)2



Maximum likelihood estimation of mean and variance

The log of the likelihood function

ln L
(
µ, σ2|yt ,

)
= −T

2
ln 2π − T ln σ− 1

2σ2

T

∑
t=1

(yt − µ)2

Maximize likelihood as a function of parameters conditional on the
data

I Can do all at once or sequentially

Want to estimate µ

Denote the estimator by a “hat” over it

Maximize by solving

∂ ln L

∂µ
=

1

σ2

T

∑
t=1

(yt − µ̂) = 0



Maximum likelihood estimation of mean and variance

Maximize by solving

∂ ln L

∂µ
=

1

σ2

T

∑
t=1

(yt − µ̂) = 0

T

∑
t=1

(yt − µ̂) = 0

T

∑
t=1

yt = T µ̂

µ̂ =

T

∑
t=1

yt

T
= y



Illustration

Likelihood function

Figure: Likelihood function of normally distributed data with mean y of 2
and variance s2ml = ∑ (y − y)2 /T of 1. The maximum likelihood estimator
is the mean of the normal distribution.



Finish by finding estimator of variance

Estimator of σ2

Concentrate µ out of likelihood function by replacing it by y

ln L
(
σ2|yt

)
=− T

2
ln 2π − T ln σ− 1

2σ2

T

∑
t=1

(yt − µ̂)2

=− T

2
ln 2π − T

2
ln σ2 − 1

2σ2

T

∑
t=1

(yt − y)2

Maximize the concentrated likelihood function with respect to σ2



Finish by finding estimator of variance

Maximize likelihood function with respect to σ2

ln L
(
σ2|yt

)
= −T

2
ln 2π − T

2
ln σ2 − 1

2σ2

T

∑
t=1

(yt − y)2

Solve

∂ ln L

∂σ2
= −T

2

1

σ̂2
+

1

2

1

σ̂4

T

∑
t=1

(yt − y)2 = 0

− T +
1

σ̂2

T

∑
t=1

(yt − y)2 = 0

σ̂2 =

T

∑
t=1

(yt − y)2

T



Consistency and unbiasedness

µ̂ = y and σ̂2 =

T

∑
t=1

(yt−y )2

T are consistent estimators of µ and σ2

I Not necessarily unbiased

I σ̂2 =

T

∑
t=1

(yt−y )2

T is a biased estimator of σ2

F Not very important with enough observations



Properties of maximum likelihood estimators commonly
mentioned

Maximum likelihood provides a couple of natural estimators of the
variance of the estimator
Let θ be a parameter we have estimated

Var
[
θ̂
]
≥
(

E [(∂ ln L (θ|y) /∂θ)]2
)−1

where the expectation with respect to the distribution of y ’s is
evaluated at the true parameter
Under regularity conditions

E [(∂ ln L (θ|y) /∂θ)]2 = −E

[
∂2 ln L (θ|y)

∂θ2

]
The term information matrix denotes

I = −E

[
∂2 ln L (θ|y)

∂θ2

]
Therefore, under regularity conditions,

Var
[
θ̂
]
= I−1



Typical properties of maximum likelihood estimators

Let θ̂ML be the maximum likelihood of some estimator

I Suppose that the likelihood function has a single peak and a unique
maximum

Fairly general properties

I plim θ̂ML = θ
I θ̂ML →d N

(
θ, I−1

)
I Asymptotic variance of θ̂ML is AVar

(
θ̂ML

)
= I−1

I Asymptotic standard deviation of θ̂ML is ASD
(

θ̂ML

)
I t-ratio is θ̂ML−θ

ASD(θ̂ML)
∼ N (0, 1)

I Can do more complicated tests by likelihood ratio test

I −2 ln
(

maxLikelihood Restricted
maxLikelihood Unrestricted

)
∼

χ2 (degrees of freedom = number of restrictions)



Bayes rule

Foundation is Bayes rule

Combine likelihood function of parameters with prior information to
get posterior distribution and conclusions

I Prior – before the data
I Posterior – after the data



Bayes rule is simple

The application is the big jump

Start from definition of conditional probability

pr (A,B) = pr (A|B) pr (B)

I where pr (A,B) is the joint probability of two events A and B
I pr (A|B) is the probability of the event A conditional on the event B
I pr (B) is the probability of B

This equation defines conditional probability

pr (A|B) = pr (A,B) / pr (B) if pr (B) 6= 0

Also can say
pr (A,B) = pr (B |A) pr (A)

Equate two definitions and get

pr (B |A) = pr (A|B) pr (B)

pr (A)



Bayesian interpretation

pr (B |A) = pr (A|B) pr (B)

pr (A)

Want to draw an inference about probability of observing event B

I Observe some discrete event A
I pr (B |A) is the probability of B conditional on observing A
I pr (B) is prior probability that B is true
I pr (A|B) is probability of observing A if B is true
I pr (A) is the probability of observing A whether B is true or not
I Note that pr (A) is the unconditional probability of observing A

F pr (A) = pr (A|B) pr (B) + pr (A|not B) pr (not B)

pr (B |A) = pr (A|B) pr (B)

pr (A|B) pr (B) + pr (A|not B) pr (not B)



Example of Bayesian analysis

pr (B |A) = pr (A|B) pr (B)

pr (A|B) pr (B) + pr (A|not B) pr (not B)

Example: B is the result that have illness, say flu

I A is some evaluation
I Have a prior probability of having flu, pr (B) , say 50 percent
I How informative is it if you go to doctor’s office and he says you have

the flu?
I Suppose doctor says you have the flu

F 80 percent of time when you do pr (A|B)
F 20 percent when you don’t pr (A|not B)

I If the doctor says you have the flu, then the probability of your having
the flu is

.8 · .5
.8 · .5 + .2 · .5 =

.40

.50
= .80

I A lot of information in the doctor’s evaluation



Second example of Bayesian analysis

pr (B |A) = pr (A|B) pr (B)

pr (A|B) pr (B) + pr (A|not B) pr (not B)

Have a prior probability of having flu, pr (B) , say 50 percent

Go to doctor’s office and he says you have the flu

Suppose that he says you have the flu

I 60 percent of time when you do pr (A|B)
I 40 percent when you don’t pr (A|not B)

Then the probability of your having the flu given the doctor says you
do is

.6 · .5
.6 · .5 + .4 · .5 =

.30

.50
= .60

If pr (A|B) and pr (A|not B) are both 0.5, then pr (B |A) = .5, the
prior probability



Diffuse prior

First example

I prior probability of flu is .5
I probability that doctor will say you have the flu is .8 if you do
I posterior probability is .8

Second example

I prior probability of flu is .5
I probability that doctor will say you have the flu is .6 if you do
I posterior probability is .6

You had a diffuse prior – equal probabilities of flu or not – and you
learned what can be learned from doctor



Third example of Bayesian analysis

pr (B |A) = pr (A|B) pr (B)

pr (A|B) pr (B) + pr (A|not B) pr (not B)

Have a prior probability of having flu, pr (B) , say 80 percent

Go to doctor’s office and he says you have the flu

Suppose that he says you have the flu

I 80 percent of time when you do pr (A|B)
I 20 percent when you don’t pr (A|not B)

Then the probability of your having the flu given the doctor says you
do is

.8 · .8
.8 · .8 + .2 · .2 =

.64

.68
= .94



Analysis in econometric context

pr (B |A) = pr(A|B) pr(B)
pr(A)

Can write this in terms of discrete or continuous probability
distribution functions

I Let B be a parameter β and pr (B) ≡ p (β)

F Might be CAPM parameter

I Prior probability distribution of plausible values of β for some firm
I Let A be some data we observe and pr (A|B) = p (y |β), the probability

of the data given β



Bayesian analysis of parameter values

p (β|y) = L (β|y) p (β)

p (y)

where p (β|y) is the posterior probability distribution of values of β
conditional on the data

p (y) is a normalizing constant independent of β so this can be
analyzed using

p (β|y) ∝ L (β|y) p (β)

where ∝ means “proportional to”

Purpose is to make inferences about the posterior distribution of
parameter values

I Very flexible
I Coherent
I Can be computationally demanding but computer time is cheap



Comparison of classical and Bayesian analysis

Classical: Probability distribution of estimator β̂

I True value is a number, zero in this case if the estimator is unbiased



Comparison of classical and Bayesian analysis

Bayesian: Posterior probability distribution of various possible values
of β

I True value is one of these possible values, with some more probable
than others



Interpretration of Estimate of Variability

Estimate of five percent confidence interval for a normal distribution



Summary

Estimation issues

I Unbiased
I Estimate of variability
I Consistency
I Maximium likelihood estimator

Bayesian statistics
I Plausibility of posterior value after seeing data
I Natural interpretation of variability


	About Me
	Financial Econometrics – What will you learn?
	What is financial econometrics?
	Topics Covered

	Inference and Estimation
	Minimum Variance Unbiased Estimation
	Consistency

	Maximum Likelihood
	Bayesian Inference
	Summary

